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Preface 

These lecture notes served as the basis for a two credit graduate 

level seminar offered through the USU physics department during 

the fall quarter of 1989. It was oriented towards graduate 

students in physics and engineering and assumed no mathematical 

background beyond introductory differential equations. All 

problems were attempted by the students and discussed as a group. 

The seminar appears to have been successful in that the students 

enjoyed it and learned a lot. 
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Chapter 1 - Qualitative/Historical overview 

In this introductory chapter various ways of visually presenting 

the evolution in time of dynamical systems are reviewed. This is 

followed by a qualitative review of types of system behavior from 

simple to complex. 

A 'dynamical system' is a system which evolves in time. Thus each 

parameter can be viewed as a function of time (t). The most common 

ways of graphically representing the behavior of such systems are 

to plot various parameters (such as displacement) against time and 

to plot a trajectory in 'phase space' (or •parameter space') which 

is traversed as time progresses. 

One of the simplest examples to consider is a falling object. 

After it is released, it falls until it hits the ground. Aristotle 

attempted to explain this as the search of the object for its 

"natural place" at the center of the Earth. He hypothesized that 

the universe consisted of seven spheres with the Earth at the 

center. This led to a strengthened anthropomorphic view which was 

even more firmly established during the Middle Ages. Despite the 

philosophical implications of the later Copernican theory, and the 

revolutions in thought that accompanied it, modern civilization 

continues to owe much of its everyday view of the world to 

Aristotle. Figure 1 depicts the two representations of a falling 

object. 
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While Copernican theory revolutionized thought, the next type of 

motion to capture the attention of science was oscillatory motion, 

in the form of the pendulum. Galileo saw a measurable periodicity 

in the motion of a pendulum. Christian Huygens made use of this 

repetition to measure time. Figure 2 shows pendulum motion. 

\ 
Ficr u re 1 - Fallina Objec t 

Y-

I 
I 

Fic u re 2 - Pendulum (Unda rnDed) 

An actual pendulu m will not behave as shown in Figure 2. Friction 

and air resistance will damp the motion. This may explain in part 

~hy Arist6tle t~cug h t t:iat pendulum motion \,;as still a 
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manifestation of an object seeking its "natural place". He 

attributed the oscillations to the constraint of the rope. 

Ultimately, however, the bob comes to rest at its lowest point. 

Figure 3 shows the motion of a damped pendulum. Note that the 

volume enclosing the remaining trajectory becomes smaller as time 

passes and the system dissipates energy. 

X + x 

Figure 3 - Damped Pendulum 

Galileo believed that the period of a pendulum was independent of 

the amplitude of its motion. Thus he believed that the motion was 

linear in nature. The linear pendulum equation is actually just 

an approximation, which becomes inadequate at larger amplitudes. 

One of the first to see that things could begin to get exceedingly 

complicated was Jules Henri Poincare. Poincare investigated 

dynamical systems just before the turn of the century, with many 

of his published works appearing between 1880 and 1900. Many would 

call him the 'grandfather' of dynamical systems. Poincare once 

wrote that: 
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"A very small cause which escapes our notice determines a 

considerable effect that we cannot fail to see, and then we say 

that the effect is due to chance. If we knew exactly the laws 

of nature and the situation of the universe at the initial 

moment, we could predict exactly the situation of that same 

universe at a succeeding moment. But even if it were the case 

that the natural laws had no longer any secret for us, we could 

still know the situation approximately. If that enabled us to 

predict the succeeding situation with the same approximation, 

that is all we require, and we should say that the phenomenon 

had been predicted, that it is governed by the laws. But it is 

not always so; it may happen that small differences in the 

initial conditions produce very great ones in the final 

phenomena. A small error in the former will produce an enormous 

error in the latter. Prediction becomes impossible ... " 

[Poincare: Science and Method] 

Poincares' warning about this sensitive dependence on initial 

conditions was largely forgotten. Perhaps scientists were afraid 

to admit that their common linearized models, and the few simple 

nonlinear ones they understood, were woefully inadequate to explain 

many phenomena. Through the first half of this century they found 

their simple models to be adequate for their needs. 

One day in the early 1960's a meteorologist named Edward Lorenz 

was using a system of three equations to model weather. Suddenly 

he was confronted with behavior of the type mentioned by Poincare. 
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The simple models which had served science so well in the past were 

no longer adequate. 

In the last thirty years, a growing number of scientists and 

mathematicians have studied systems ex.hibi ting sensitive dependence 

on initial conditions. This behavior will be defined, loosely, as 

chaotic for now. There are different rigorous definitions of 

chaotic behavior, but sensitive dependence on initial conditions 

is a key characteristic of all chaotic systems. Figure 4 shows the 

type of behavior which may occur in chaotic systems . 

. 
X 

· 1 

·• 

· l ·> 

Figure 4 - Chaotic Behavior 

Chaotic systems of equations have been used to model many types of 

observed behavior. Applications are diverse and include 

meteorology, traffic flow, structural mechanics, fluid mechanics, 

population biology, chemical reactions. 
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Further Reading 

Interesting reading on the history of scientific thought from 

Aristotle through Einstein can be found in [Bohm; "Special 

Relativity"], particularly in the lengthy philosophical appendix. 

General background more specifically oriented towards the recent 

pioneers of chaotic dynamics abounds in [Gleick]. 

References to specific applications can be found in [Thompson and 

Stewart] and in the appendix to [Gleick]. 
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Problems 

1) Derive the equation of motion for the simple undamped pendulum 

[ x'' (g/1) sin x = O ] and show that the equation can be 

approximated by [ x'' + (g/l)x = o ]. 

2) The populations of two competing species can be modelled by 

the Lotka-Volterra equations: 

x' = .B1X(K1 - X - a1y) 

Y' = .BzY (Kz - Y - a zX) 

where x is the population of prey and y is the population of 

predators. 

( i) If the populations do not compete ( a 1 = a 2 = O) , what do 

these equations reduce to? 

(ii)Let x' = y' = 0 and find the equilibrium solutions (x 0 ,y 0 ). 

(There are four.) 

(iii)Let x = x 0 + ox and y = y 0 + oy. Assume ox and oy are small 

enough to ignore any of their products and find the 

linearized system of equations for small population changes 

in a neighborhood of the equilibrium point which lies in the 

first quadrant (off the axes). 

3) In Figure 4 the trajectory appears to cross itself. Does it? 
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Chapter 2 - Some Necessary Advanced Calculus 

In this chapter some basic definitions are given. Only the bare 

essentials required in the following chapters are presented. This 

should serve as a review for those who have had a course in 

advanced calculus and a brief introduction to some important 

concepts for those who have not. 

Definition 2.1: Let F be a function defined on the set S. We say 

that Fis one-to-one on S if and only if for every x and yin S 

F(x) = F(y) implies x = y. If Tis any set which contains F(S), 

then Fis called a mapping from S to T, and we write F: S • T. If 

F(S) = T, the mapping is said to be onto T. 

Definition 2.2: A metric space is a non-empty set, M, of objects 

( called points) together with a function d: MxM • R
1

, which is 

called the metric of the space. The metric d must satisfy the 

following for all points x,y,z EM: 

(i) d(x,x) = 0 

(ii) d(x,y) > 0 if X ,,,,. y 

( iii) d(x,y) = d(y,x) 

(iv) d(x,y) ~ d(x,z) + d(z,y) . 

This metric space is denoted by (M,~) . 

Example: Let M be any non-empty set, and d(x,y) = o if x = y and 

1 if X ,,_ y. This is called the "discrete metric space". For 

additional examples of metrics, see Problems 1 and 6. 
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Definition 2.3: Let (S,d
5

) and (T,dr) be metric spaces and let 

f: S • T. The function f is said to be continuous at a point pin 

s if for every € > o there is a 6 > O such that 

dr(f(x) ,f(p)) <€whenever d5 (x,p) < 6. 

Note that continuity is a local property. We say that f is 

continuous at p. If f is continuous at every point in a subset A 

of s, we say it is continuous on A. 

Example: Let the function f be defined on [O,l] such that f(x)= x 

if xis rational and f(x) = 1 - x if xis irrational. Then f is 

continuous at x = 1/2. Let p=l/2 in definition 2.3, so f(p)= 1/2. 

Let Ix - Pl < 6 and consider the two cases: 

(i) x rational: I f(x) - f(p) I = Ix - Pl < 6 

(ii) x irrational: lf(x) - f(p) I = 11 - x - Pl = IP - xi < 6. 

So for any given c, let 6 = c and the definition is satisfied (at 

p = 1/2). 

However, f is not continuous anywhere else. Let p ~ 1/2 and let 

O < Ix - Pl < 6 and c = IP - 1/21. 

that lf(x) - f(p) I > l2P - 11 - 6. 

For any 6, we can find x such 

( Choose x so that either p or 

xis rational and the other is not.) Thus for any 6 there is an 

x such that lf(x) - f(p) I ~ 12P - 11 = 21P - 1/21 = 2€ so f is not 

continuous. 
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Definition 2.4: Let f: s • T be a function from the metric space 

(S,ds) to (T,dr). Let f be one-to-one (so that the inverse function 

r 1 exists) and onto. If f is continuous on S and f- 1 is continuous 

on f(S) then f is called a homeomorphism, or a topological mapping. 

The metric spaces (S,ds) and {T,dr) are said to be homeomorphic. 

If, in addition, (r-times continuously 

differentiable), then f is called a cr-diffeomorphism. 

Definition 2.5: A sequence of points ~ in a metric space (S,ds) 

is said to converge if there is a point pin S such that for every 

E > 0 there is an integer N(E) such that d(~ 1 p) <€whenever 

n ~ N. This convergence is denoted by~ • p. 

Definition 2.6: Let (S,ds) be a metric space and let Ac S. A 

point x ES is called a limit point of A if there is a sequence 

(not containing x) ~ in A such that~ • x. A set A is closed 

if it contains all its limit points. The union of a set and all 

its limit points is called the closure of A and is denoted by A. 

A set A is open if its complement is closed. 

Example: Let ~ be the sequence in R1 such that Xn = 1/n. Then 

The set A = ( 0, 1) is not closed because it does not 

contain zero, which is a limit point. A= (0,1). 

Definition 2.7: A subset U of Sis dense in S if U = s. 
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Example: The set of rational numbers is dense in R. To show this, 

it must be shown that every number is a limit point of the set of 

rationals. It suffices to show that the positive rationals which 

are less than one form a dense subset of [ O, 1] . Let x be an 

irrational number in this interval. To construct a sequence >Cy, 

of rationals such that xn • x we let xn = pJn where O < Pn < n and 

choose Pn such that lx n - xi is a minimum. 

Definition 2.a: A set of points A is a Cantor set if it is closed 

and contains no intervals, and if every point is a limit point of 

other points i n the set. 

Example: The classic introductory example is called the "Cantor 

middle thirds set", A 3 • Start with a whole interval, such as 

[0,1]. Remove the middle third, (1/3,2/3). Next remove the middle 

third of each remaining interval, (1/9,2/9) and (7/9,8/9). 

Continue inductively this process of removing open sets. 

Note that in the nth step we remove 2n intervals, and that each of 

these has length l/3 n+i. (The first step is n=O.) Thus after the 

nth step the total length removed is I(2 i /3 i+
1

) = (1/3)I(2/3)i, where 

the sum is from i =Oto i = n. 

resulting geometric series to get 

Letting n • oo and summing the 

(l/3)L(2/3)i = (1/3) [l - 2/3]- 1 = (1/3) (3) = 1 . 

Thus A3 has zero length. 
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It can now be shown that A 3 meets the criteria for a Cantor set. 

Since each interval removed is open, the union of everything 

removed is open. The complement of this is A 3 and is closed. The 

set cannot contain any intervals since the length would then be 

non-zero. 

To see that each point is a limit point, consider that at any step 

the endpoints of all remaining intervals are elements of 11.3 • 

Choose any point pin 11.3 • At the nth step, pis contained in some 

remaining interval. Choose Xn to be an endpoint of this interval, 

but not equal top. Then Xn • p. 

This concludes our brief review of basic general mathematics. In 

the next chapter some additional mathematics is developed which is 

oriented more specifically towards dynamical systems. 

Further Reading 

The reader who is interested in continued study of chaotic dynamics 

is strongly encouraged to enroll in or to attend a course on 

Advanced Calculus. There are many references available on this 

material. One of the best is (Apostol], although the uninitiated 

may have some trouble with the level of rigor. 
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Problems 

1) The open ball B(a,r) is defined as the set of all points x such 

that d(x,a) < r. Sketch B (0, 1) in 2 (R ,di) for the following 

metrics. [ x = (x 1 ,x 2 ) ]. 

d 1 (x,a) = [ (x 1 - a 1 )
2 + (x 2 - a 2 )

2
]

112 (Euclidean) 

d 2 (x,a) = max1=1 , 2 lx 1 - a 1 1 

(sum is over i) 

2) Let the function f be defined on [0,1) by f(x) = 1 if x is 

rational and f (x) = O if x is irrational. 

continuous anywhere. 

Show that f is not 

3) Which of the following are homeomorphisms and/or (C1
-) 

diffeomorphisms on their domain of definition? 

i) sinh x 

ii) cosh x 

iii) xn ; 

4) Find all limit points: 

i) {xi sin(l/x) = O} 

ii) {xi x = (1/n) + (1/m); n,m E z+} 
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5) Starting with a square with sides one unit long, divide each 

side into fifths . Remove the middle horizontal and vertical 

strips, leaving four squares with sides of length (2/5). Show that 

repeating this process leaves behind a set of points which is a 

Cantor set. (Hint: Find the total area remaining after the nth 

step and show that it goes to zero as n• oo.) 

6) Let (I2 ,d) be the metric space {s=(s 0s 1s 2 ••• ) lsi = 0 or l} and 

let d(s,t) = I lst-ttl/2t where the sum is over all i. 

space consists of all binary sequences. 

i) Show that d is a metric on lz• 
ii) Let S1 = (001 001 001 ... ) 

Sz = (010 110 110 ... ) 
S3 = (001 110 110 ... ) 
S4 = (001 010 110 ... ) 

Thus the 

Find d(s 1 ,sd for i = 2,3,4. What does it mean for two 

sequences to be "close"? 

iii)Find the maximum distance M between two points. 

examples of points s,t such that d(s,t) = M. 

iv) Let Per(a) be the set of all repeating sequences 

Give two 

s = (s 1 ••• sn s 1 ••• sn •.• ). Show that Per(a) is dense in lz• 

(Hint: Fort E lz construct a sequence rn of points in Per(a) 

such that T n • t as n • oo.) 
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Chapter 3 - An Introduction to Iterated Maps 

In this chapter some of the basic features of iterated maps, and 

of dynamical systems in general, are introduced. The map 

Xn+1 = xn + c will serve as a basis for much of the discussion. 

Definition 3.1: The composition of two functions f(x) and g(x), 

denoted by f 0 g(x) , is defined by f 0 g(x) = f(g(x)). The nth iterate 

of a function Fis denoted by Fn(x) and is defined inductively as 

Fn(x) = F°Fn - 1 (x). 

Note that Fn does not indicate any type of exponential. To avoid 

confusion with differentiation, the nth derivative will sometimes 

be indicated by Fen>. 

If the chain rule for derivatives is applied to the nth iterate 

h(x) = Fn(x) it results in the following expression: 

h' (X) = F' (Fn- 1(X)) · F' (Fn -2 (x)) · · · F' (X). 

Definition 3.2: Let (S,d 5 ) be a metric space and let F be a 

function on s, F: S • S. The orbit of a point pin Sis the set of 

points p,F(p) ,F 2 (p), 

Definition 3.3: A point xis a fixed point of the function f if 

f(x) = x. It is a periodic point with period n if fn(x) = x. The 

smallest n for which fn(x) =xis called the prime period of x. 

The set of all iterates of a periodic point form a periodic orbit. 
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The set of periodic points of period (not necessarily prime) n is 

denoted by Pern(f), and the set of fixed points by Fix(f). 

Definition 3.4: A point xis an eventually periodic (fixed) point 

of period n if it is not periodic (fixed) itself, but there exists 

m >Osuch that f~ 1 (x) = f 1 (x) for all i ~ m. 

Note that a point xis eventually periodic if, for some i, 

x
0 

= f 1 (x) is periodic. 

Example: Let F: R • R, F(x) = x 2
• Then F"(x) • oo if !xi > 1, 

F"(x) • 0 if !xi < 1, F" (l) = 1 for all n, and F"(-1) = 1 if n ~ 1. 

Thus 1 is a fixed point and -1 is an eventually fixed point. All 

other points approach (are asymptotic to) either O or oo. 

Example: 1 is an eventually periodic point of F(x) = x
2 

- 1. 

Example: Let S1 denote the unit circle in the plane, and let the 

metric on S1 be the length of the shortest arc connecting two 

points. A point on the circle may be specified by its angle 8 in 

radians. The same point 8 is specified by 8 + 2~k for any integer 

k. Let f: S1 • S1 be defined by f(8) = 28. (In the complex plane 

we could write f(z) = z2 .) Since f"(8) = 2"8, 8 E Pern(f) if and 

only if 2"8 = 8 + 2~k, or if 8 = 2~k/(2" - 1). Thus the set Pern(f) 

consists of the (2" - l)th roots of 1. The set of all periodic 

points off is dense in S1
• To show this, construct a sequence of 

points with w, arbitrary, as a limit point as follows. Let the 
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nth entry in the sequence be the element of Pern ( f) which is 

closest tow, i.e. the closest (2n - l)th root of 1. Each element 

of this sequence will be a periodic point off, and IXn - wl • O 

as n • oo. Note that f(O) = O, so 8 = O is a fixed point off. If 

8 = 2rrk/2n then fn(B) = 2rrk and 8 is eventually fixed. Thus the set 

of eventually fixed points off is also dense in S1
• 

Theorem 3 . 1: 

points. 

A homeomorphism cannot have eventually periodic 

Proof: Assume f is a homeomorphism and xis an eventually periodic 

point of f. Then fi+n (x) = f 1 (x) for some i. Since F is a 

homeomorphism, it is one-to-one, so f(s) = f(t) if and only if 

s = t. Thus fi+n-t (x) = f 1
-

1 (x) . If this argument is repeated i-1 

more times, the result is that fn(x) = f(x). This shows that x 

itself is periodic, so it is not eventually periodic (Defn. 3.4). 

Theorem 3.2: A homeomorphism of R cannot have periodic points with 

prime period greater than two. 

Example: There are homeomorphisms of R with periodic points of 

prime period two. Let f 1 (x) = -x and f 2 (x) = -x 3
• Then Per 2 ( f 1 ) 

contains all points. All of these except the origin have a prime 

period of two. Per 2 (f 2 ) consists of the points -1, 1, and O. 

A useful technique in the study of systems in R
1 is graphical 

analysis. The function f is graphed and the diagonal (y = x) is 



18 

included on the graph. To follow the orbit of a point p, start on 

the diagonal at (p,p) and draw a vertical line to (p,f(p)). Next 

follow a horizontal line back to the diagonal, (f(p) ,f(p)). 

Another vertical line will intersect the graph of f at 

(f(p) ,f 2 (p)). Going back to the diagonal leads to (f
2

(p) ,f
2

(p)). 

Repeating this process displays the orbit on the diagonal. 

See Fig. 3.1. 

Figure 3.1 - Graphical Analysis of cos x 

Fixed points are those points where f crosses the diagonal. By 

considering sections of graphs near fixed points, it is easy to see 

that orbits of nearby points will be attracted to a fixed point p 

if If' (p) I < 1 and will be repelled if If' (p) I > 1. 

Example: Let Fc(x) = x 2 + c and consider F0 (x). The fixed points 

are O and 1, and -1 is eventually fixed. F0 ' (x) = 2x. 

jF
0

' (0) I = O < 1, so O is attracting. jF 0 ' (1) I = 2 > 1, so 1 is 

repelling. This is easily verified through the use of graphical 

analysis. 
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The above observations can be extended to periodic points. Note 

that if x E Pern(f), then xis a fixed point of fn. 

Definition 3.5: Let p be contained in Pern(f). If I (fn) '(p) I < 1, 

pis called an attracting periodic point, an attractor, or a sink. 

If Ice)' (p) I > 1, p is called a repelling periodic point, a 

repellor, or a source. Attractors and repellors are called 

hyperbolic. The point pis nonhyperbolic if I (fn) '(p) I = 1. 

Example: Let Fc(x) = x 2 + c, as before. For c > 1/4 the graph of 

Fe will lie above the diagonal and all orbits will diverge to +oo. 

If c = 1/4, a nonhyperbolic fixed point appears at x = 1/2, where 

F11dx) is tangent to the diagonal. When -3/4 < x < 1/4 there are 

two fixed points, the greater one being repelling and the smaller 

attracting. This splitting of the one nonhyperbolic point into two 

hyperbolic points fixed points is an example of a bifurcation. 

Nonhyperbolic points are often associated with bifurcations. 

Next, jump ahead and consider F_2 (x). While changes occur between 

c = -3/4 and c = -2, they will be discussed later. The fixed 

points are the solutions to x = x2 
- 2, or 2 and -1. Thus all 

interesting dynamics occur on the interval I = [-2, 2] . Points 

outside this interval have orbits diverging to +oo. The graph of 

F_2 (x) on the interval of interest is shown in Figure 3.2. 

Note that [-2,0] and [0,2] are each mapped onto [-2,2], or that 

F_2 folds I over itself twice. A plot of F_/(x) shows that it folds 
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I over itself four times, and a plot of F_/ (x) shows that this 

process repeats itself. See Figure 3.3. 

Figure 3. 2 - Graph of F_2 (x) = x 2 
- 2 

Figure 3.3 - Graphs of F_2
2 (x) and F_:C.{& 

From Figure 3.3 it is clear that F_/(x) has four fixed points and 

that F_/ has eight. Thus there are four elements in Per 2 (F_2 ) and 

eight in Per 3 ( F_2 ) • In general, Pern ( F _2 ) contains 2n points. 
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Theorem 3. 3 (Sarkovskii): Order the positive integers in the 

following manner: 

3 • 5 • 7 • ••• • 2·3 • 2 · 5 • ••• • 22 ·3 • 22 ·5 • ••• • 23 
• 22 

• 2 • 1. 

Assume F: R • R is continuous and has a periodic point of prime 

period n. If k follows n in the above ordering, then Falso has 

a periodic point of prime period k. 

Corollary 3.3.1: If F has a point of prime period three, then F has 

prime periodic points with all periods. 

corollary 3.3.2: If F has a periodic point whose period is not a 

power of two, then F has infinitely many periodic points. 

Despite the powerful results this theorem a ssumes very little of 

F, requiring only continuity. It is very counter-intuitive. After 

all, how hard should it be to set up a system with a period three 

oscillation and no others? 

In 1975 James Yorke and a student of his, Tien-Yien Li, published 

a proof of Corollary 3.3.l in a famous paper titled 'Period Three 

Implies Chaos'. This was the birth of the term 'chaos'. Only 

several years later at a conference in East Berlin did Yorke 

discover that his result was just a special case of a Theorem 

published by Sarkovskii in 1964 in the 'Ukrainian Mathematics 

Journal'. 
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The question which arises naturally at this point is "Where are all 

these orbits?". They are generally not apparent when the function 

is iterated on a calculator or a computer. This question will be 

addressed, to some extent, in the following chapters. In the next 

chapter some methods of analysis which allow us to better 

understand the dynamics of such maps are developed. 

Further Reading 

Much of the material in this chapter is covered in [Devaney] and 

in the article by Devaney in [Keen]. [Devaney] includes some 

interesting additional examples of maps of the circle. 

For a proof of Sarkovskii's Theorem, the reader is referred to 

[Devaney] or to the original article [Sarkovskii]. 
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Problems 

1) Describe the dynamics of F_1 (x). Find all fixed and periodic 

points and determine whether they are attracting, repelling, a­

non-hyperbolic. 

2) Show that for -3/4 < c < 1/4 Fe has two fixed points, one 

attractor and one repellor. 
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Chapter 4 - Analysis of the Logistic Map 

In this chapter the iterated map Xn+i = µXn ( 1 - Xn) is analyzed 

through the use of symbolic dynamics and the concept of topological 

conjugacy is introduced. This map arises in studies of 

populations. (See Appendix A, Problem 2). 

Let Fµ(x) = µx(l - x). Forµ> o, the basic features include two 

fixed points at O and at p = (µ - 1)/µ. Fµ(l) = O, so 1 is 

eventually fixed. If x ~I= [0,1), then the orbit of x diverges 

to -oo. See Figure 4.1. 

Figure 4.1 - Graph of Fµ(x), µ>1 

If J-11, E (1,3), p is attracting and O is repelling. All non­

diverging orbits are attracted to p. This can be verified 

grap ihically. At µ = 3, p is non-hyperbolic and a bifurcation 

occurs. 
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Jump ahead now toµ> 4, and let F~ 4 (x} denote Fµ(x) for anyµ> 4 

for the remainder of this chapter. Forµ= 4 the maximum value of 

F
4

(x) is 1, and whenµ> 4 a section of the graph rises above 

Fµ>
4

(x} = 1. Thus points in this section escape from the interval I 

after only one iteration. See Figure 4.2. 

~ Ao ~ 
Figure 4.2 - Fµ(x) forµ> 4 

Let A
0 

denote the set of points in I which escape on the first 

iteration. A
0 

is an open interval centered at 1/2. It is open 

sin c e its endpoints are mapped to 1, and centered at 1/2 by the 

symmetry of the function. Thus A0 = (1/2 - 6,1/2 + 6 ) where 6 will 

dep end onµ. 

Nex t note that the two sections of I remaining if A0 is removed, 

call them I 0 and I 1 , are each mapped onto [O,l] (refer to Fig. 4.2). 

The r efore, each contains a subinterval which is mapped into 

(1/2 - 6 , 1/2 + 6). If a point x in I 0 or I 1 is mapped into this 

int:rval, then Fµ>/(x) will escape from I. Call the union of these 

two s ubintervals A1 • 
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Since the orbits of points in A0 or A1 escape from I and diverge 

to -oo, the set of points with interesting (i.e. bounded) orbits is 

a subset of I - (A0 u A1 ). See Figure 4.3. 

!~ 

At this point four intervals are left. However, each of these is 

mapped onto I 0 or I 1 • (The left interval is mapped onto I 0 , for 

instance.) Since points in a certain subinterval of I 0 or of I 1 are 

mapped out of I after two iterations, there is a subinterval of 

each of the remaining four intervals in which the orbits which 

diverge. Call the union of these four intervals A2 • 

This process can be continued and the set of points remaining (i.e. 

those with interesting orbits) is I - (uAn) where the union is over 

all integers n. This procedure of repeatedly removing open 

subintervals is similar to the construction of the Cantor set A 3 

(see Chapter 2). Indeed, the set of interesting points is a Cantor 

set, which will be denoted Aµ. 

If Fµ>/ and Fµ>/ are graphed, the same type of folding that occurred 

with f = x2 
- 2 can be seen (see Chapter 3), except that some of 

the 'fold' spills over from I each time. Since periodic points of 

F(x) of period i are fixed points of Fi(x), this repeated folding 



27 

shows that Fn has 2n fixed points, or that Pern(F) consists of 2n 

elements. See Figure 4.4. 

~F~ic_g..._u=r~e~4~--4~_---=G~r~a=p=h=---=o'-"f:-...:F~11., 4 
2 

( x) 

While Fµ(x) forµ< 3 was simple, the function Fµ>4 (x) is not. What 

happens betweenµ= 3 andµ= 4 will be touched on later. Further 

analysis of F (x) in the Euclidean space R1 would appear to be 

extremely difficult at best. The next task, therefore, is to 

develop an equivalent model in a different metric space. 

Definition 4.1: Let the sequence space En consist of all infinite 

sequences of integers between o and n-1 (inclusive). Let the 

metric d~ define the distance between points in En and be given by 

where the sum is over all i. 

shown that d~ is a metric on E2 • 

In problem 6 in chapter 2 it was 

Definition 4.2: The shift map a: En • En is the function a(s) = 

) . That is, a simply drops the first 

entry in the sequence. 



'l'heorem 4. 1: Let s, t E :E2 , and suppose si = ti for i :5 n. 
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Then 

d~(s,t) S 1/2n. Conversely, if d~(s,t) S 1/2n, then si = t 1 for 

i Sn. 

Proof: First assume si = ti for i Sn. Then dE2 (s,t) = :Elsi - til/2
1 

where the sum is over all i > n. Thus dE2 (s,t) S 2 - ~(l/2i) where 

this sum is over all i Sn, or d~(s,t) S 2 - (2 - (1/2)n). This 

leads directly to dE2 (s,t) S 1/2n. Now assume sJ ~ tj for some 

' < J - n. 

for all i Sn. • 

Theorem 4.2: The shift map a on ~2 is a continuous function. 

Proof: For any € > O, some 6 > O must be found such that 

d~(a(s),a(t)) <€whenever d~(s,t) < 6. For any€> o, choose n 

such that 1/2n < €. Let o = 1/2n+l. 

i S n+l, by Theorem 4.1. That means (a(s)J 1 = (a(t)J 1 for i Sn. 

Using Theorem 4.1 again, dE2 (a(s) ,a(t)] S l/2n < €. • 

What is needed now is some way of relating a on Lz to Fp 4 on Aµ• 

Definition 4. 3: The itinerary function s (x) : Aµ • Lz is the sequence 

S (X) = SoS1S2 

F µ>4 j ( X) E I O • 

where sj = 1 if Fµ>4j (x) E I 1 and sj = O if 

(Refer to Figure 4.2). 

Theorem 4.3: S(x): Aµ • Lz is a homeomorphism. 

Recall that a homeomorphism is also called a topological mapping. 

What Theorem 4.3 says is that Aµ and Lz are the same as sets. 
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Theorem 4 . 4 : s · F ,_.>4 = a· s . 

Theorem 4. 4 says that taking F,_.>dx) ( in Euclidean space) and then 

S (F,_.>4 (x)) yields the same sequence as taking S (x) and then applying 

the shift map to it. The dynamics of F,_.>4 (x) on A,_. and the dynamics 

of a(s) on Lz are equivalent! Homeomorphisms such as S:A,_. • Lz are 

important and deserve a special title. 

Definition 4.4: Let f: s • sand g: T • T be two maps on the 

metric spaces (S,d
5

) and (T,dr). f and g are called topologically 

conjugate if there is a homeomorphism h: S • T such that h 0 f = g 0 h. 

A function such ash is called a topological conjugacy. 

For F µ>4' a, and s, the following diagram holds: 

A,_. F• A,_. 

St St 

:E2 "• :Ez 

The homeomorphisms gives a one-to-one correspondence between fixed 

points, periodic points, and all other features of F and a. 

The following properties of a(s) can be established: 

1) Pern (a) has 2n elements 

2) Per (a) is dense in :E2 

3) a has a dense orbit in :E2• 
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From the topological conjugacy of F14>4 and a it follows immediately 

that: 

1) Pern ( F µ>d has 2n elements 

2) Per ( F µ>d is dense in A14 

3) F µ> 4 has a dense orbit in 1114• 

While the first property could be deduced graphically, the other 

two are not obvious. Topological conjugacy has made it a simple 

matter to establish these facts, since they are readily apparent 

in (~ 2 ,d1;2 ). Other properties can also be established, but this 

requires more mathematics than has been developed here. In the 

next chapter we will give a definition of chaotic behavior and look 

at some additional examples. 

Further Reading 

The proofs for several key results have been omitted here, 

primarily because their mathematical complexity exceeds that which 

has been developed or is being assumed. They can all be found in 

(Devaney]. The problems in chapter 1.6 of (Devaney] establish some 

properties concerning non-wandering orbits and recurrence, but also 

require additional mathematical background. At this point, the 

reader who has not studied advanced calculus should have ample 

motivation to do so! 



Problems 

1) Show that a(s) has the three properties listed. 

property 2, ref er to problem 6 in chapter 2. 
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[Hints: For 

For property 3 

construct a sequence of all 1 digit binary numbers (0,1) followed 

by all 2 digit binary numbers (0,1,2,3) etc.] 

2) Is a(s) a homeomorphism? Give two reasons why or why not. 

3) Let Fc(X) = x 2 + c, and Fµ(X) = µx(l - X). Show that if C < 1/4 

there is a uniqueµ> 1 such that Fc(x) is topologically conjugate 

to F11(x). [Hint: Try h(x) =ax+~.] 

4) Let Gn(x) = 4x(l - x) + (l+€)sin n~x, and consider G3 (x). Graph 

G3 (x) . Sketch G/ (x). [Hint: Reason graphically, do not try to 

explicitly find G3 (G3 (x)).] Describe the set of points with bounded 

orbits. What would you expect the appropriate topologically 

conjugate space to be? Give the conjugacy, list the the properties 

which could be deduced, and write down a dense orbit for G3 in its 

conjugate space. 
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Chapter 5 - Chaotic Iterated Maps 

The maps studied in the last two chapters, Fc(x) and Fµ(x), 

exhibited very complicated behavior for certain ranges of the 

parameters c andµ. Such behavior can be called 'chaotic'. In 

this chapter 'chaos' is defined formally, and examples of chaotic 

maps are introduced. The definition introduced here is that given 

in [Devaney] and is topological in nature. Other definitions are 

possible, some requiring a knowledge of measure theory, ergodic 

theory, and/or other subjects. 

Definition 5.1: Let (S,ds) be a metric space. A map f:S-+ Sis 

called topologically transitive if for any pair of open sets 

A,B c S there is a positive integer k such that fk(A) n B ~ 0. 

Under iteration, a topologically transitive function maps any 

region of S to any other so that S cannot be partitioned into 

disjoint sets such that each is mapped into itself. 

Example: Let (S 1 ,d) be the unit circle with a 'shortest arc 

length' metric. Define the translation map TA:S-+ S by 

Let A be irrational, A~ Q. 

then (n - m)A is an integer and, since A~ Q, n = m. Thus the 

orbit of e consists of distinct points. An infinite set of points 

on the circle must have a limit point. 1 Therefore, for any€> o 

l The existence of a limit point is guaranteed by the 
Bolzano-Weierstrass Theorem. 
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there are integers n and m such that IT:(e) - T;(e) I < e. 2 If k = 

n - m, d(T/(8),8) < e. Note that T.>. preserves length, so T/ maps 

the arc between 8 and T/ ( 8) to the arc connecting T/ ( 8) and T/1c ( 8) • 

Thus for any e an integer p(e) can be found such that iterations 

of T! partition S1 into arcs of length less thane. Therefore, the 

orbit of any point 8 comes arbitrarily close to any other point in 

S1
• Thus T.>. is topologically transitive for irrational A. 

Definition 5.2: Let f:S • S be defined on the metric space (S,d
5

). 

The map f has sensitive dependence on initial conditions if there 

is a S > 0 such that for every x ES and any neighborhood N of x 

there exists at least one y EN such that ds(fn(x) ,fn(y)) > S for 

some n. If there is a S such that this condition holds for every 

pair x,y ES, f is called expansive. 

Sensitive dependence means that the orbit of at least one point 

arbitrarily close to x separates from the orbit of x. 

Expansiveness means that the orbits of all nearby points diverge. 

Definition 5.3: A map f:S • Son (S,d 5 ) is called chaotic if it has 

sensitive dependence on initial conditions, is topologically 

transitive, and if Per(f) is dense ins. 

Example: Fµ(x) = µx(l - x) is chaotic on Aµ forµ> 4. Let S be 

any number less than the length of A 0 , where A 0 was the first 

2 Every convergent sequence is a Cauchy sequence. 
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interval removed and separated I 0 and I 1 • If x,y e Aµ, and x ~ y, 

then they have different itineraries, so S(x) ~ S(y). Recall that 

S(x) maps Aµ onto L, so S(x) ~ S(y) means that the sequences differ 

in at least one entry, say the nth. But this means that either 

F/(x) or F,t(Y) is in I 0 and the other is in I 1 , so IF/(x)-F/(y) l>o. 

Thus Fµ exhibits sensitive dependence on initial conditions. Since 

Fµ has a dense orbit in Aµ, it is topologically transitive. It was 

shown earlier that the periodic points are dense. 

Example: f: S1 
• s 1

, f(B) = no is chaotic. since angular distance 

between two points is multiplied by n each iteration, f has 

sensitive dependence on initial conditions. In fact, it is 

expansive. Since any small arc in S1 expands under iteration and 

eventually covers S1 entirely, the map is topologically transitive. 

That periodic points are dense was shown for n=2 in chapter 3. A 

similar argument to the one presented there holds for other n as 

well. 

Example: The Tchebycheff polynomials Tn(x) are solutions to the 

differential equation (1 - x 2 )y" - xy' + n 2y = o, and can ·be 

defined by Tn(x) = cos(n arccos x). The first four are: 

T 0 (x) = 1 

T1 (x) = X 

T2 (x) = 2X 2 
- 1 

T3 (x) = 4x 3 - 3x 

Tn (x) is chaotic on I= [-1,1] for all n. Let gn:S 1 
• S1

, gn(B)=nO. 

Let Tn(x):I • I be the nth Tchebycheff polynomial. Let h:S 1 
• I, 
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h(0) = cos 0, so his the projection of S1 onto I. Now h 0 gn= cos n0 

and Tn°h = cos(n arccos (cos 0)) = cos n0. Figure 5.1 summarizes 

the situation. 

s1 
gn 

51 --• 

h.!- h.1. 

Tn 
I --• I 

Figure 5.1 

Note that h(0) is not one-to-one, so we do not have a topological 

conjugacy between gn and Tn. In this case, the two maps are said 

to be semi-conjugate. This semi-conjugacy can be used to show that 

Tn(x) is chaotic on I. 

To see that Tn(x) is topologically transitive, let U and V be two 

arbitrary open intervals in I. Then there exists two intervals u 

and v in S 1 which project onto U and V. gnk(u) n v ~ 0 for some k, 

since gn(0) is topologically transitive. Taking projections shows 

that T:(U) n V ,- 0. 

Similarly, any neighborhood U of an arbitrary point x in I is the 

projection of some interval u in S1
• Since gn ( 0 ), is expansive, 

S1 c g:(u) for some k. Projecting back to I, I c T:(u). Thus, 

there are points in U which separate by at least 1 (6 = 1). 
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Finally, for any interval u in S1 there is a periodic point x of 

gn(B) in u since Per(gn) is dense in S1
• Periodic points of gn(B) 

project to periodic points of Tn(x), so any neighborhood U of I 

contains a periodic point of Tn(x) and Per(Tn) is dense in I. 

So far only one dimensional iterated maps have been considered. 

Continuous maps can often be reduced to iterated ones through the 

use of Poincare maps. One dimensional maps sometimes offer insight 

into the behavior of higher dimensional maps with parameters in a 

certain range. The two dimensional Henon map, for instance, 

reduces in one special case to the quadratic map Fc(x). 

In the next chapter, some additional mathematical tools are 

introduced which will be necessary for the study of dynamical 

systems which are continuous and/or higher dimensional. 

Further Reading 

Most of the material in this chapter can be found in [Devaney], 

including a specific case of a single Tchebycheff polynomial. The 

generalization presented here is an extension of that to all Tn. 

Some additional information on the iterated two dimensional Henon 

map and its reduction to the quadratic map is presented in 

[Thompson/Stewart]. 
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Problems 

1) For translations of the circle show that all fixed points of TA 

are fixed points if A is rational, A= p/q. (Hint: Consider TAq.) 

Is TA a chaotic map for either case, A E Q or A~ Q? Give two 

reasons in each case. 

2) Verify that y = Tn (x) = cos (n arccos x) is a solution to the 

equation (1 - x 2 )y" - xy' + n 2y = o. 

3) Show that a periodic point BP of gn ( B) = nB projects under 

h(B) = cos B to a periodic point of Tn(x). 

4) The Henon map is given by: 

Xn+l = 1 - aXn 2 + y n 

Yn+l = bXn 

Show that if b = O and xis scaled, this map reduces to 

5) Like most special functions, the Tchebycheff polynomials have a 

recursion relation: Tn+iCx) = 2xTn(x) - Tn_i(x). 

a) Find T4 (x) from T3 (x) and T2 (x) (given in the chapter). 

b) Using the polynomial form of T4 (x), show that h 0 g 4 = T4 h 

where h = cos B and g 4 = 4B. ( Hint: Look up the multiple 

angle formula for cos 4B.) 
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6) The first two Hermite polynomials are H0 = 1 and H1 = 2x. The 

recursion relation is Hn+i = 2xHn - 2n8n_1 • Find H2 (x) and show that 

it is chaotic on some interval. 
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Chapter 6 - More Mathematical Basics 

In this chapter, some of the tools necessary in the study of higher 

dimensional systems and systems modelled by ordinary differential 

equations are reviewed. 

Definition 6.1: Let f:Rn • Rn, f(x) = (fi(x),f 2 (x), ... ,fn(X)) where, 

for each i, f 1 (x) :Rn • R1
• f(x) is said to be differentiable at a 

point x 0 if there exists a linear transformation L:Rn • Rn (i.e. an 

n x n matrix) such that f(x 0 + h) = f(x 0 ) + L(h) + llhllE(h) .where 

Ec(h) • 0 as 11h11 • 0. 

Definition 6.2: The matrix representation of the linear 

transformation L(h) in definition 6.1 has the form 

F, (Xo) = 

where all partial derivatives are evaluated at x 0 • The determinant 

of this matrix is called the Jacobian determinant and is denoted 

Theorem 6.1 (Chain Rule): Let f(x) be continuously differentiable 

at x 0 and let g(x) be continuously differentiable at f(x 0 ), where 

f and g are both functions from Rn to Rn. If g 0 f is defined on an 

open set U such that x0 E u, then g•f is continuously 

differentiable at x 0 and (g 0 f) '(x 0 ) = g' (f(x 0 )) · f' (x 0 ). 



Example: Let f(u,v) = (u cos v, u sin v) and 

Then 

and 

g(x,y) = ( (x 2 + y 2) 112, arctan (y /x) ) 

( u, v) ~ ( 0, 0) and ( x, y) "' ( 0, 0) . 

__ [C0
0

S V 
f' (u,v) 

sin v 

-u sin v l 
u cos vJ 

y/ (x2+y2) 112 J 
y/ (x2+y2) 
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and assume 

To apply the chain rule, it is necessary to evaluate g' at f(u,v): 

-- [co. s v g' (u cos v, u sin v) 
sin v 

-u sin vl . 

U COS V 

The chain rule is now used, and the two matrices are multiplied: 

(g 0 f) I (u,v) = g' (u cos v, u sin v) · f' (u,v) = I2 

where I 2 is the 2 x 2 identity matrix. 

Note that the chain rule is a matrix product. In this example, 

(g 0 f) 1 = I2 because (g 0 f) (u,v) = (u,v) • The function f is a 

transformation from polar to cartesian coordinates and g is a 

transformation from cartesian back to polar coordinates. 

As the next example shows, the Jacobian determinant of a 

transformation indicates how volume scales. 

Example: Consider the ellipsoid (x/5) 2 + (y/3)
2 

+ (z/2)
2 = 1. Let 

x = 5u, y = 3v, and z = 2w, or (x,y,z) = T(u,v,w) = (5u,3v,2w). 

Then the ellipsoid in (u,v,w) coordinates is u
2 

+ v
2 

+ w
2 = 1, or a 

unit sphere. The volume of a unit sphere is (4/3)~. Now, 

T' (u,v,w) - rn 0 
3 
0 2

00] , or Jr(u,v,w) = 5·3·2 = 30. The volume of 
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the original ellipsoid is V = (4/3),r•Jr = 4O,r. This is easily 

verified by a direct calculation, V = (4/3),r(a) (b) (c) = 

(4/3),r(5) (3) (2) = 4O,r. This case is somewhat trivial, since all 

that was done was to scale the coordinates. However, this 

procedure could be used in cases where the ellipsoid was translated 

and/or rotated. In the more general case, the derivative matrix 

would not be diagonal. 

Theorem 6.2 (Inverse Function Theorem): 

continuously differentiable on an open set U such that x0 EU and 

let Jr(X 0 ) ~ o. Then there is an open set V such that x 0 EV and f 

has a continuously differentiable function f- 1 defined on f(V). 

Example: Consider a one-dimensional case, f:R 1 
• R1

• Let f(x) = xn 

where n is a positive integer. Then f' (x) = nxn-i, and Jr = f'. 

Since Jr(x) ~ 0 for x ~ O, f- 1 (x) can be defined on a neighborhood 

of any point other than zero. Note that this conclusion is 

strictly local in nature, since f -1 (x) is not globally unique when 

n is even. At x = O the theorem is inconclusive and other means 

must be used to establish the existence or non-existence of a local 

inverse. If n is even, f is not one-to-one in any interval 

containing the origin and the inverse will not exist. However, 

when n is odd the origin is a point of inflection and not an 

extrema and f- 1 does exist. 

Example: Let f(r,0} = (r cos o, r sin 0}. Then Jr(r,o) = r, so f- 1 

will exist everywhere with the exception of the origin. f- 1 changes 

cartesian to polar coordinates. At (O,O}, o is not unique. 



Example: The Henon map is defined by 

Xn+1 = 1 - aXn 2 + Yn 

I
.._ -2ax 

H' (x,y) = 
!.. b 

Yn+l = bXn 

, and JH = -b. Thus the Henon map is 
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invertible everywhere unless b = o. At b = o it reduces to the 

quadratic map, which is not invertible. The price paid for 

stepping down to one dimension is that the system cannot be 

followed backwards in time. That is, Xn cannot be found as a 

unique function of Xn+l when b = 0. 

The definition of differentiability is easily extended to functions 

In the general case of n "' m the derivative is a 

rectangular matrix, so its determinant is not defined. 

Definition 6.3: Let f:Rn • Rm, f(X) = (fi(x), ... ,fm(X)), XE Rn. 

The function f(x) is said to be differentiable at x 0 E Rn if there 

is a linear transformation L:Rn • Rm so that Ec(h) • 0 as 11h11 • 0 

and f (x 0+h) = f (X 0 ) + L (h) + II hll Ee (h) . The transformation L is an 

m x n matrix and is called the Frechet derivative off at x 0 • It 

has the form 

r
a f~/ ax1 

f I (Xo) = . 

~ a frr/ a x 1 

where the partial derivatives are evaluated at x0 • 
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If f:Rn • R, the Frechet derivative is a row vector, which is the 

gradient of f. If f:Rn • Rn, the Frechet derivative is an n x n 

matrix and reduces to the case first introduced. The chain rule 

can also be extended to the general case. 

matrices, rectangular ones are multiplied. 

Instead of square 

Definition 6.4: Let F:Rn.._ • R•, X E Rn, y E R• and Z = (x,y) E Rn-tm. 

The partial derivative of F with respect toy is an m x m block of 

FI ( z) 

[

8F1···/8y1 
Fy(Z) = 

_aFnJ8y 1 

and is 

sometimes denoted by 8F/8y 1 ... aym or a(F 1, ... ,Fm)/a(y 1, . . . ,y m). 

Theorem 6. 3 ( Implicit Function Theorem) : Let F: Rn-tm • Rm be a 

continuously differentiable function. Assume that for some x 0 E Rn 

Then there is a 

continuous function f:Rn • Rm defined on some neighborhood N of x 0 

such that f(x 0 ) = Yo and F(x,f(x)) = O for all x EN. 

Example: Let F: R5 
• R2

, F = ( f 1, f 2 ) where 

f 1(x,y,z,u,v) = xy 2 + xzu + yv 2 
- 3 

f (X Y Z U V) U
3yz - 2xv + u 2v 2 

2 , , , ' = 

The derivative is: 

= [y2+zu 
F 1 (x,y,z,u,v) 

-2v 

2xy+v 2 

zu 3 

XU 

yu3 

and 

xz 2yv ] 

-2x+2u 2v 



F(l,1,1, 1 ,l) = (O,O), so consider the Frechet derivative there: 

F 1 (1,l,l,l,l} = [ 
2 

-2 

3 

1 

1 

1 

1 

5 

At (1, 1, :., 1, 1), 8 F/8 (x,y) = r 2 3
] 

_-2 1 
and det(aF/a(x,y)) = 8. 
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Therefore, there is some function f:R 3 
• R2 such that (x,y) = 

f(z,u,v) , and in some neighborhood Nin R3 of (z,u,v) = (1,1,1} 

F(f(z,u,~) ,z,u,v) = o. since det (aF/a(y,u)) = 15, there is also 

some function g:R 3 
• R2 such that (y,u) = g(x,z,v). 

f 1 (x,y , z,u,v) = 2x + y + 2z + u - v - 1 , 

f 2 (x,y , z,u,v) = xy + z - u + 2v -1 , and 

f 3 (x,y , z,u,v) = yz + xz + u 2 + v . 

F(1,1,-1 , 1,1) = o and 

[
. 2 1 221 _221 -211 J. F 1 (1,1,-l,1,l) = 1 1 
-1 -1 

At (1,1,-l,l,l), aF/a(x,y,z) = l-2 1 2] 
1 1 1 , 

_ -1 -1 2 
so I a F / a ( x, y, z) I = 3. 

By the inplicit function theorem, there is a function f: R
2 

• R
3 

defined on a neighborhood N of (1 , 1} such that (x,y,z) = f(u,v) and 

F(f(u,v) ,u,v) = O on N. 

Note that in these examples, the implicit function theorem was used 

to establish the existence of a function, but no attempt was made 

to find the function explicitly. It is often impossible to do so. 
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Also note that, like the inverse function theorem, this is a local 

theorem which only establishes the existence of a function in some 

region about a particular point. 

Theorem 6. 4: Let f: Rn • R1
, n > 1. If f is continuously 

differentiable, then f is not one-to-one. 

Proof: The approach here is to assume that such a function has 

been found, and to show by contradiction that it cannot exist. If 

Vf = o everywhere, f is constant and not one-to-one, so there must 

be some point x 0 = (x 11 x21 ••• , Xn) for which Vf (x 0 ) °" O. At this 

point, the implicit function theorem implies that one coordinate, 

say x 1 , can be written as a function of the other coordinates. 

Thus x 1 = g (x 2 , ••• , Xn) where g is continuous in some open 

neighborhood r 0 of x 0 • Furthermore, f(g(x 21 ••• ,Xn) ,x 2 , ••• ,Xn) = O on 

r 0 • However, if this so then Vf = o on r 0 (and at x 0 in 

particular). Since this contradicts the fact that Vf(x 0 ) ""o, it 

follows that f cannot be continuous and one-to-one. 

The inverse and implicit function theorems are fundamental tools 

in the analysis of higher dimensional dynamical systems, either 

iterated or continuous. 

At this point it is necessary to develop an understanding of some 

of the basic principles of ordinary differential equations. Most 

of the features of iterated maps, such as attracting and repelling 

orbits and hyperbolicity, are analogous to properties of systems 

of ordinary differential equations in phase space. 
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The linear system of equations x'= Ax can be easily solved by a 

transformation of coordinates which diagonalizes the matrix A, 

provided that A is a diagonalizable matrix. (See Problem #3 in 

Appendix A). In two dimensions the system can be written as 

x' =ax+ by 

y' =ex+ dy 

Now consider the general nonlinear two-dimensional system 

x' = f(x,y) 

y' = g(x,y). 

This may be approximated in a small neighborhood about a point 

(x 0 ,y 0 ) by a linear system if a= at/ax, b = at/ay, c = ag/ax, and 

d = ag/ay, where all partial derivatives are evaluated at (x 0 ,y 0 ). 

This is a first order series approximation. 

Definition 6.5: Let F:Rn • Rn define the dynamical system x'=F(x). 

The points where F(x) = o are called critical points, equilibrium 

points, stationary points, or fixed points. 

Theorem 6.5: Let then-dimensional dynamical system F:Rn • Rn be 

defined by x 1 '= f 1 (x) where x E Rn (so 1 ~ i ~ n) and F(x) = 

( f i(x) , f 2 (x) , ... , fn (x) ) . In a neighborhood of an equilibrium point 

x 0 in the domain of F, the behavior of the system is approximated 

by the linear system x' = F' (x 0 ) x where F' (x 0 ) is the Frechet 

derivative of Fat the point x0 • 

Obviously, critical points 

defined for iterated maps. 

are analogous to the fixed points 

The behavior of a map near such points 
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can be examined by finding the linearized system as described in 

Theorem 6.5 and finding the eigenvalues of F'. Since the matrix 

F' is different at each critical point, the behavior of each one 

must be considered separately. 

Example: The Lotka-Volterra competition equations are used to model 

two biological species which interact. They are 

x ' 

where x and y are the two populations. There are three critical 

points which are immediately obvious; (0,0), (O,K 2 ), and (K1 ,0). A 

fourth equilibrium point can iound by solving the two equations 

Yo = (K2 - o:2K1) / ( 1 - 0:1 0:2) . The 'linearization' of the system is 

(x,y) T' = A( x , y ) T where A is the matri x 

[p' ( K, 

/32 (Kz - 2y -

At the f irst three c ri t ical points: 

[ /31 ( K1 - 0:1K2) 0 1 
A ( 0, K2) 

-P,K2 j ' 
and 

-/3 zo:2K2 

[ -/3 1K1 -p ,a,K, ] 
A (K 1, 0) = 

0 /32(K 2 - O:zK1) 
Since populations are inherently positive, ( Xo, Yo) is only of 

interest if it is in the first quadrant. since ( Xo, Yo) is a 



48 

Since populations are inherently positive, (x 0 ,y 0 ) is only of 

interest if it is in the first quadrant. Since (X 0 ,y 0 ) is a 

critical point of the original equations and x 0 ~ O and Yo~ O, 

(K1 - x - a 1y) and (K2 - y - a2x) are both zero so 

A (Xo, Yo) = 

Definition 6.6: Let F:Rn • Rn and let x 0 be a critical point of F. 

The point x0 is said to be stable if for every€> O there is a 

S > 0 such that every solution x (t) which, for some time t 0 , 

satisfies llx(t 0 ) - x 0 II < S, llx(t) - x 0 II < € for all t ~ t 0 • If the 

point x 0 is stable and there is some ry > o such that any solution 

which satisfies llx (t 0 ) - x 0 II < ry satisfies limt......,llx (t) - x 0 II = 0, 

then x 0 is called an asymptotically stable point. 

stable, it is called unstable. 

If x 0 is not 

In non-rigorous terms, a critical point is stable if trajectories 

which are close to the critical point at some time t 0 stay close 

after that, asymptotically stable if nearby trajectories are 

attracted to the critical point, and unstable if at least one 

trajectory which is nearby at t 0 goes away from the point at a 

later time. 

Definition 6. 7: Let F:Rn • Rn, so that x' = F' (x 0 )x is the 

corresponding linearization near a critical point x 0 • If the real 

parts of all of the eigenvalues of F'(x 0 ) are non-zero, then the 

point x 0 is called a hyperbolic point. 

hyperbolic. 

Otherwise, it is non-



49 

Theorem 6.6: If x 0 is a hyperbolic critical point of the system 

x' = F(x), F:Rn • Rn, then the linearized system x• = F' (x 0 )x 

behaves in a manner qualitatively similar to the original system 

in some neighborhood of x0 • 

Consider the two-dimensional case, so the linearized system has the 

form x• = Ax where A is a 2x2 matrix. If the eigenvalues of A, A1 

and Az, are real and distinct a transformation of coordinates T can 

be found such that T-1AT is diagonal. This is the canonical form 

of A. If A1 ,A 2 are not distinct, are complex with non-zero real 

part, or are pure imaginary a transformation T can be found such 

that T-1AT is a matrix of appropriate canonical form. Eigenvalues 

are not changed by these transformations, so only these basic 

canonical forms need be considered. 

Case #1: Real eigenvalues of the same sign, A1A2 > o. 

For distinct values, A1 ~ Az, the canonical form is diagonal. Thus 

the system can be transformed into one where x' = A1X, y' = AzY• 

The solution is x = x 0eut, y = y 0e.xzt. If A1 , Az > 0, then all 

trajectories are repelled and the critical point is an unstable 

node. If A1 ,A 2 < o, then trajectories are all attracted and the 

point is a stable node. See Figure 6.1. 
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Figure 6.1 - Stable and Unstable Nodes 

If A1 = Az, the canonical form is either [: :] or [: :] . 
The conclusion is similar. Obviously, stable nodes are 

asymptotically stable points and unstable nodes are unstable 

points. 

Case #2: Real eigenvalues of opposite sign, A1A2 < O. 

Since .X
1 
~ Az the canonical form is always diagonal, and x = x 0e>-

1
t, 

y = y
0
eut. Thus the point attracts in one direction and repels in 

the other. This type of unstable critical point is called a 

saddle. See Figure 6.2. 

Figure 6.2 - Saddle Point 

Case #3: Complex eigenvalues with non-zero real part. (A12 = a± ifi). 
a fi · 

The canonical form in this case is A= , and the solutions 
-fi a 

are x, y = e"t ( a cos fit ± b sin fit) . Thus the real part, a., 

indicates whether trajectories are attracted or repelled while the 
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imaginary part, /3, results in an oscillatory component in the 

solution. This type of critical point is called a spiral, focal 

point, or vortex point. If a < O the point is asymptotically 

stable, and if a> O it is unstable. See Figure 6.3. 

Case #4: Purely imaginary eigenvalues. (Nonhyperbolic). 

This is like the last case with a= o. The point is called a 

center. It is stable but not asymptotically stable. See Figure 6.3. 

Figure 6.3 - A Stable Spiral and a Center 

Two things should be remembered here. First, only the local 

behavior near the critical point has been determined in the case 

of a general nonlinear system. Filling in the rest of the phase 

plane is, in general, a difficult problem. Second, a matrix which 

is not in canonical form will have features which are distortions 

of those shown above. While a similarity transformation (T-1AT) 

leaves eigenvalues unchanged, eigenvectors are not invariant . See 

Figure 6.4. 

Definition 6.8: Let F:Rn • Rn, and let x 0 be a critical point of F. 

The index of x 0 is the number of eigenvalues of F' (x 0 ) with positive 

real part. 



52 

Figure 6.4 - General Saddle Point 

For an n-dimensional system, a critical point with index n is 

repelling (in all directions). A non-hyperbolic critical point 

with index o is attracting ( in all directions) and is 

asymptotically stable. If the index is not O or n, a non-hyerbolic 

point attracts in some directions and repels in others. In this 

case it is not stable, since the linear system repels on some 

subspace Rm, m < n. For n = 3, see Figure 6.5. 

Nonlinear systems also have limit cycles, which are periodic 

solutions (closed trajectories) which attract or repel nearby 

trajectories. In R2
, the Poincare-Bendixson Theorem and related 

results assist in the analysis of limit cycles. For higher 

dimensions, however, there are no analogous results. For an 

example of a system with a (countably) infinite number of distinct 

limit cycles, see problem #7 at the end of the chapter. 
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Further Reading 

The inverse and implicit function theorems are covered in detail 

in most books on advanced calculus, including [Apostol]. The 

introduction to differential equations presented here is, of 

necessity, brief and cursory. [Waltman] covers most of the topics 

in this chapter in more detail and is quite readable, requiring 

only the standard introductory courses in linear algebra and 

differential equations. 
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4) Let T define a change of coordinates, y = Tx. What condition 

is necessary on T for this to be a homeomorphism? 

5) For the real-valued matrices of interest here, complex 

eigenvalues always occur in conjugate pairs. Why? 

6) Show that the characteristic polynomial of A is invariant under 

a similarity transformation, B = T-1AT. [Hint: Start with p 8 = 

det (,\ I - B) and then let I = T-1T and B = T-1AT. ] 

7) Consider the system: 

x' = -y + x(x 2 + y 2
) sin(1r/ (x 2 + y 2

) 
11 2

) 

Y' = x + y(x 2 + y 2 )sin(1r/(x 2 + y 2
)

112
) • 

a) Convert the system to polar coordinates and show that 

r = 1/n, e =tis a solution. 

b) Show that r' > O for 1/(2n + 1) < r < 1/2n and r' < O for 

1/2n < r < 1/(2n-1). 

c) Make a sketch in the phase plane for the first few values 

of n. 

8) Analyze the stability of the critical points in the Lotka­

Volterra equations. 



Problems 

1) Let f(x) = (x/2) + x2sin(l/x). 

a) Explain why f(x) is not invertible in the neighborhood 

(-€,€) for any€. (Hint: Is it one-to-one?] 

b) Show that f'(O) ~ O. 

h- 1 (f(x+h) - f(x)).) 

(Use the definition; f' (x) = limh • o 

Why does this not contradict the 

implicit function theorem? 
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2) Let f(x,y) = xeY - y + 1. Determine whether or not the curve 

f(x,y) = O can be represented in the forms x = f(y) and y = g(x) 

near the point (e- 2 ,2). 

3) Let F(µ,x) = µx(l - x). 

a) Find the Frechet derivative F', and the partial derivative 

submatrices of F' for aF/aµ and aF/ax. 

b) Where does the implicit function theorem allow us to write 

µ = f(x)? X = g(µ)? 

c) At the points where the implicit function theorem does not 

allow a conclusion, show that the functions for g cannot 

exist. [Hint: Implicitly differentiate to findµ' (x) and 

x'(µ) and draw your conclusions from these. Findµ'' and 

x' 1 if necessary.] 

4) Let T define a change of coordinates, y = Tx. What condition 

is necessary on T for this to be a homeomorphism? 



57 

Chapter 7 - Introduction to Continuous systems 

In this chapter some of the basic features of continuous systems 

are introduced. In the last chapter, the behavior a system near 

a critical point was shown to depend on the eigenvalues of the 

linearized system at the point. These were divided into three 

types; those with positive real part, those with negative real 

part, and those with zero real part. In the direction of the 

corresponding eigenvectors, the point was seen to be unstable, 

asymptotically stable, and indeterminate, respectively. 

Let A:Rn • Rn be a linear transformation, and consider x' = Ax. 

Then there will be n eigenvalues and n (generalized) eigenvectors 

associated with A (counting multiplicities). A set of m 

eigenvectors will span a subspace, Rm, of Rn. The space Rn can be 

partitioned into three subspaces in the following way. 

Definition 7.1: Let A:Rn • Rn be a linear transformation, so x' = 

Ax. Let vi denote an eigenvector corresponding to an eigenvalue 

with positive real part, ui denote an eigenvector corresponding to 

eigenvalue with negative real part, and wi denote an eigenvector 

corresponding to eigenvalue with zero real part. Then 

E5 = span{v 1 , ••• ,Vn5
}, Eu= span{u 1

, ••• ,unu}, and EC= span{w 1
, ••• ,~c} 

where ns +nu+ nc = n. E5 is called the stable subspace of A, Eu 

is called the unstable subspace of A, and Ec is called the center 

subspace of A. 
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For a general nonlinear system there is generally more than one 

fixed point and the space Rn cannot be divided up so nicely into 

subspaces. Instead, there are manifolds associated with each 

distinct fixed point. For the remainder of this chapter, critical 

points will be assumed to be hyperbolic. Thus the center subspace 

and its corresponding manifold will not be of interest here. They 

turn out to be very important in the study of bifurcations. 

Definition 7.2: Let F: Rn • Rn, XI = F (x) . 

point of F and N be a neighborhood of x 0 • 

Let x0 be a critical 

The local stable 

manifold of x 0 , W\
0

c (x 0 ) , and the local unstable manifold of x 0 , 

W\ 0 c (X 0 ) , are defined by 

W\0 c(X 0 ) = { X = X(t 0 ) EN I limt-eco llx(t) - Xoll = 0} 

and 

w\oc(Xo) = { X = x(to) EN I limt • -UJ llx(t) - Xoll = 0} . 

These manifolds are closely related to the subspaces of Definition 

7.1 at the critical point. 

Theorem 7.1 (Stable Manifold Theorem): Let F:Rn • Rn and let x 0 be 

a hyperbolic fixed point of F. Then there are local stable and 

unstable manifolds W\
0

c (x 0 ) , W\ 0 c (x 0 ) which have the same dimensions 

ns, nu as those of the eigenspaces Es, Eu of the linearized system 

F' (x 0 ) • Furthermore, W\
0
c (X 0 ) and W\ 0 c (X 0 ) are tangent to Es and Eu, 

respectively, at x0 • 

The global stable and unstable manifolds can be found by following 

points in W10c forward (backwards) in time. (Forward for Wu, 

backwards for W5
• ) 
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Example: Let x' = x, y' = -y + x2
• This system has a single 

critical point at x 0 = (0,0). The linearized system has the 

diagonal matrix (1,-1) as F' (x 0 ). For A1 = 1, u
1 = (1,0) and for 

Az = -1 v 1 = (0,1). Thus E5 is they axis and Eu is the x axis. The 

global manifolds can be found by integration in this case. 

Dividing y' by x' gives the phase plane equation 

dy/dx = -(y/x) + x. 

Rewriting this as 

xy ' + y = x2 
, or as ( xy) ' = x

2 
, 

it can be directly integrated. The solution is 

xy = x 3/3 + c, or y = x2/3 + c/x . 

The trajectory through x 0 tangent to Eu is y = x
2
/3 and the 

trajectory tangent to Es is x = 0. See Figure 7.1. 

Figure 7.1 - Example 

Limit cycles can also be studied for stability. One way of doing 

this is the Poincare map, also called a first return map. 

important technique will only be introduced briefly here. 

This 
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Let 1 denote a periodic trajectory. Choose a point p on~- Now 

take a local cross section L of dimension n-1 such that L contains 

p and F(x) ·n(x) ~ o for all x EL, where n(x) is the unit normal 

vector to L at x. (This last condition prevents L from being 

tangent to any trajectories.) Let Uc L denote some neighborhood 

of p. The Poincare map P:U • L is given by P(q) = q,. where q,. 

indicates the point on L where the trajectory through q first 

returns (after timer). The time interval r will depend on q, but 

will approach the period of~ as q • p. If the orbit of q in L 

approaches p for all q in some neighborhood U of p, then 1 is 

asymptotically stable. The iterated map P(q) can be analyzed using 

the methods already developed. 

Poincare maps can be computed if the general solution in an 

appropriate region is known. They can also be approximated using 

perturbation and averaging methods. 

Certain sets of points in phase space have properties which make 

them important and/or interesting. 

Definition 7.3: Let F:Rn • Rn. Let x(t) be a trajectory of Fin 

the phase plane with x(t 0 ) = x 0 • A set S of points x 0 such that 

x(t) ES for all t ~ t 0 is called an invariant set of F. Let Ube 

a neighborhood of x0 = x(t 0 ). If, for any U, there is a point Yo= 

y(t 0 ) EU such that y(t) EU for some t > t 0 , then x 0 is called a 

nonwandering point of F. The set of all such points is called the 

nonwandering set of F and is denoted by n. 
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A point is in an invariant sets if its trajectory is contained in 

s. The global stable and unstable manifolds are invariant sets. 

A nonwandering point either returns to within some small distance 

of itself, or is a limit point of such points. Fixed points and 

periodic orbits are contained inn. 

Example: Consider the undamped linear oscillator, x'' + x = o. 

Every point lies on a periodic orbit, so n = R2
• Since all 

trajectories are closed, each is a bounded invariant set. The 

union of all invariant sets is R2
• This is best visualized by 

considering the phase space to be the surface of a cylinder. See 

Figure 7.2, and imagine it is on the surface of a cylinder so that 

the left and right sides are attached. 

y 

Figure 7.2 - Linear Oscillator 

Definition 7.4: Let F:Rn • Rn and let x 0 = x(t 0 ) be a point in Rn. 

A point p is an w-limit point of x0 if there is a sequence of 

points x(t 1) ,x(t 2 ) , ••• on the trajectory of x0 such that x(ti) • p 
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and ti • oo. A point q is an a-limit point of x 0 if x(ti) • q 

and ti • -oo. The set of all w-limit (a-limit) points of x 0 is 

called thew-limit set (a-limit set) of x 0 • 

Example: Consider a two dimensional critical point x 0 which is a 

saddle, and assume it has unique (non-intersecting) global stable 

and unstable manifolds. Then x0 is an w-limit point of all x E W
5

, 

and is an a-limit point of all x E wu. 

Example: Consider a system in two dimensions with concentric 

periodic trajectories. (See Figure 7.3). Assume that trajectories 

between the two limit cycles tend away from the outer one and 

towards the inner one. Then for all points in this annular region, 

the outer cycle is the a-limit set and the inner cycle is thew­

limit set. The sequence of points in the definition can be taken 

to be an orbit on a (one dimensional) Poincare map. 

Figure 7.3 - a.w-limit sets 

Finally, there are several types of trajectories which are 

particularly important. 
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A trajectory which connects distinct critical 

points is called heteroclinic. One which connects a critical point 

to itself is called homoclinic. Closed paths formed of 

heteroclinic trajectories are called homocl i~ic cycles. ( See 

Figure 7.4). 

(i) Homoclinic (ii) Heteroclinic (iii) Homoclinic Cycle 

Figure 7.4 - Special Trajectories 

Further Reading 

The material in this chapter is covered more thoroughly and with 

a higher level of mathematical rigor in both (Guckenheimer/Holmes] 

and [Hirsch/Smale]. 
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Problems 

1) Can two stable manifolds of distinct critical points intersect? 

What about unstable ones? Explain why or why not. 

2) Consider a linear two-dimensional system with one critical 

point at the origin, which is a saddle. Describe the invariant 

sets Sand the nonwandering set n. Is any invariant set contained 

entirely inn? 

3) Let Fµ = µx(l - x). How many bounded invariant sets are there? 

Describe it (them) forµ= 4 and forµ> 4. 

4) Describe the a-limit and w-limit sets for all points in the 

phase plane for the system given in Chapter 6, Problem 7. 
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Chapter 8 - Structural Stability 

In the last chapter, the stability of critical points was examined 

in a local sense. Whether or not a critical point is stable 

depends on what happens to nearby points as time changes. In this 

chapter a type of global stability, or robustness, is described. 

A dynamical system is structurally stable if "nearby" systems 

behave in the same way. Structural instability is often associated 

with the existence of non-hyperbolic critical points. 

Example: Consider the simple undamped oscillator x" + sin x = O. 

Letting y = x', this can be written as 

x' = y 

y' = -sin x. 

The critical points are (n~,O). The linearized system is: 

= 
n~ 

The eigenvalues are ±i if n is even and ±1 if n is odd. Thus the 

points ((2n) ,O) are non-hyperbolic. This equation is structurally 

unstable since the addition of any arbitrarily small amount of 

damping changes the nature of the entire phase portrait. 

To put the idea of structural stability in rigorous terms, "nearby" 

and "same behavior" must be defined. The second one is easy; two 

systems have the same dynamics if they are topologically conjugate. 



66 

Definition 8.1: Let F:Rn-+ Rn, PE er. The ~-norm (k ~ r), denoted 

by IIFl!k, is defined as the least upper bound of the set of numbers 

IF(x)I, IIF'{x)II, IIF"(x)II, IIP<k>(x)II over all x E Rn. If 

II (F - G) (x) Ilk < €, G (x) is called a ~-perturbation of size € of F. 

Oefini tion 8. 2: A system F: Rn -+ Rn, F E er, is er-structurally stable 

if there is an € > o such that er-perturbations of size € are 

topologically conjugate to F. 

Example: Let fi (x) = x - x 2 + €, so fa = x(l - x). II (f, - fa) (x) Ilk 
= l.u.b. { 1€1,0 } = 1€1, so f, is a ~-perturbation of size€ for 

any k. It is easy to see graphically that fa(O} = O is a fixed 

point. Note that it is non-hyperbolic. See Figure 8.1. For€> 

o, f, has two fixed points and for€< O it has none. Since the 

dynamics off, differ fundamentally from those of fa, the two will 

not be topologically conjugate. Therefore, f{x) = x(l - x) is not 

structurally stable. 
S.-l ~ ~ 

/ 

/ 
/ 

/ 

/ 
/ 

/ 

/ 
/ 

/ 

----- ------------- ---- 't 

Figure 8.1 - f(x) = x(l - x) 

There are several useful results which state that certain types of 

systems are structurally stable. 
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Definition 8.3: Let F:Rn • Rn. If x• = F(x) can be written in the 

form x• = -grad V(x) for some potential function V:Rn • Rn, then x• 

= F(x) is called a gradient system. 

Example: Consider the system in R2 given by 

x' =-ax+ xy 

y' = -ay + 1/2 (x 2 
- y 2

) • 

This can be written as x' = -av/ax, y' = -av/ay, or 

(x,y)' = -grad V(x,y) where V:R
2 

• R, 

V(x,y) = (a/2) (x 2 + y 2
) + (1/2) (y 3/3 - x

2
y). 

Theorem 8.1 (Palis/Smale): Gradient systems for which all fixed 

points are hyperbolic and all intersections of stable and unstable 

manifolds transverse are structurally stable. 

The following result holds on all systems on two dimensional 

manifolds. It is stated here in terms of R
2

• 

Theorem 8. 2 (Peixoto) : Let F: R2 
• R2

, F E er. The system F is 

structurally stable if and only if the following conditions hold. 

1) The number of fixed points and closed trajectories is finite 

and each is hyperbolic. 

2) There are no trajectories connecting saddle points. 

3) The nonwandering set consists only of fixed points and 

periodic trajectories. 
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The simple oscillator of the first example in this 

chapter is not structurally stable since there are (heteroclinic) 

trajectories connecting saddle points. 

being defined on the surface of a 

If the system is viewed as 

cylinder (which is a two 

dimensional manifold), the number of fixed points is not infinite 

as it is in the plane. However, the number of closed trajectories 

is not finite. 

Smale attempted to study systems similar to the type above, with 

a modification of the second condition. 

Definition 8.4: A Morse-Smale system is one in which: 

1) The number of fixed points and closed trajectories is finite 

and each is hyperbolic, 

2) All stable and unstable manifolds intersect transversally, and 

3) The nonwandering set consists only of fixed points and 

periodic trajectories. 

Theorem 8.3: Morse-Smale systems are structurally stable. 

While the original conjecture was that a system is structurally 

stable if and only if it is Morse-Smale, the converse of Theorem 

8.3 is not true. Smales' famous horseshoe map provided a counter­

example. 
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Structural stability is clearly a desirable feature of physical 

models. 

built. 

Higher order effects are often neglected when models are 

If it turns out that these effects change the basic nature 

of the way the model behaves, one must question the value of the 

model. Despite its desirability, many important and interesting 

models are not structurally stable. 

Further Reading 

[Devaney] contains a section on structural stability of maps on R
1 

which is on a level similar to that of the material in this 

chapter. [Guckenheimer/Holmes] contains a section in Chapter 1 

which deals primarily with systems in Rn and is considerably more 

mathematical. 
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Problems 

1) Use the criteria given in Chapter 8 to determine whether or not 

the following are structurally stable. 

a) x' = y 

y' = X 

b) x' = -3y sin x 

y' = -1 + y2 + xz ecos 2x 

c) x' = X exp [ (x 2 + y2) ] 

y' = y exp [ (x 2 + y2) ] 

d) Chapter 6, problem 7 

2) Find an iterated map TA which is not structurally stable for 

any value of>.. 
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Chapter 9 - Bifurcations 

In this chapter functions of two variables will be discussed, 

G(X,A) = fA(x). This is a function of x with one parameter, A. 

F" = µx(l - x) and Fe = x2 + c are examples. As the parameter A is 

varied, certain values may be found at which the nature of the 

solution undergoes major changes, or bifurcates. A change in the 

periodic point structure is usually involved. In the first part 

of the chapter one-dimensional iterated maps are used to illustrate 

some basic bifurcation theory. 

In the last chapter it was shown that when a system is structurally 

unstable, a small change in the system causes it to behave very 

differently. Thus the idea of structural instability is intimately 

related to bifurcations. 

Definition 9.1: Let fA:Rn • Rn, x E Rn, A E R"", and x• ::;:: fA(x). A 

value of A, say Ao, for which fA is structurally unstable is called 

a bifurcation value of A. 

Example: For Fe (x) = x 2 + c, the parameter c has a bifurcation 

value at 1/4. For c > 1/4, the graph of Fe lies above the 

diagonal. At c = 1/4 it is tangent to the diagonal at x = 1/2. 

When c < 1/ 4, Fe has two fixed points. In the first case all 

trajectories diverge to+ oo. In the second case, orbits of points 

in (-1/2,1/2) are attracted to the fixed point and all other orbits 

(except those of 1/2 and -1/2) diverge. For the third case (as 

long as x > -3/4), there are two fixed points, one repelling and 

one attracting. The behavior in phase space is shown in Figure 9.1. 
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( i) C > 1/ 4 
·1~ 

(ii) C = 1/4 

(iii) C < 1/4 -~----~------~-- " 

Figure 9.1 - Fe= x 2 + c 

This type of bifurcation is called a saddle-node or tangent 

bifurcation. A bifurcation diagram can be drawn by plotting the 

fixed points on an x vs. c graph. See Figure 9.2. 

X 

I 
,. --=---;, 

Figure 9. 2 - Saddle-Node Bifurcation Diagram, F11.lxl 

Example: Again consider Fe (x) and let c = -3/4. The two fixed 

points are x = - 1/2 and x = 3/2. The larger one is repelling, but 

the smaller one is non-hyperbolic. A bit of analysis shows that 

for c > - 3/4 it is attracting, but at the bifurcation point it 

becomes repelling. However, there is more occurring. For 

c = -3/4 - €, F/ has two additional fixed points. Thus there is 

a new periodic orbit with period T = 2. This type of bifurcation 

is called a period-doubling bifurcation. See Figure 9.3. 
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A= P(X) 

Figure 9.3 - Period-Doubling Bifurcation 

The following theorem states that bifurcations only occur at non­

hyperbolic fixed points or periodic points. It holds for periodic 

orbits since f can be replaced by C. It says that in a 

neighborhood of a hyperbolic fixed point (periodic point), the 

location of the fixed point will vary continuously with a variation 

in parameter (A) and that this fixed point is unique. 

Figures 9.2 and 9.3). 

(Refer to 

Theorem 9.1: Let fA be a one-parameter family of functions and let 

x
0 

be a hyperbolic fixed point of f A0 , so f A0 (x 0 ) = x 0 and suppose 

I f A
0

' (x
0

) I ~ 1. Then for some interval I such that x 0 E I and some 

interval N ·such that Ao E N there is a smooth function p: N -+ I such 

that x
0 

= p(A
0

) and fA(p(A)) = pp). In addition, f A has no other 

fixed points in I. 

Proof: Let G(X,A) = f A(x) - x. Since x 0 is a fixed point of f AO, 

function theorem, there are intervals I about x 0 and N about Ao and 

a smooth function p such that p(A 0 ) = x 0 and G(p(A) ,A) = O for A E 

N. G(X,A) ~ 0 unless x = p(A). • 
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The following two theorems describe the two types of bifurcations 

introduced earlier. They can be proven by applying the implicit 

function theorem and the chain rule. 

Theorem 9.2 (Saddle-Node Bifurcation): Suppose the following are 

true: 

1 ) f >.O ( Xo) = Xo 

2) f ;i.0
1 (x 0 ) = 1 

J) f >.O 11 
( Xa) ,i- 0 

4 > a f ;i./ a >-I ).a). Q ,i- o • 

Then there exists an interval I about x 0 and a smooth function 

>..=p(x), p:I • R, such that fpcx,(x) = x. Also, p' = 0 and p" ,.. 0 . 

(See Figure 9.2). 
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Theorem 9.3 (Period-Doubling Bifurcation): Suppose the following 

are true: 

1) f A(x 0 ) = x0 for all A in a neighborhood of Ao 

2) f Ao' (Xo) = -1 

3) f AO I I I ( Xo) ,- Q 

4 ) a f //a A I A- Ao .,. o • 

Then there exists an interval I about x 0 and a smooth function 

p:I • R such that fp<x>(x) -,. x but fp<x/(x) = x . (See Figure 9.3). 

The saddle-node and period-doubling bifurcations are the most 

common of those occurring on one-dimensional maps. Some maps will 

undergo a series of period-doubling bifurcations as a parameter is 

varied, ultimately reaching a point at which the behavior is 

chaotic . This is termed the 'period-doubling route to chaos'. 

In higher dimensions, the following theorem is important in the 

study of bifurcations. It is stated for continuous systems here. 
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Theorem 9. 4 ( Center Mani fold Theorelll) : Let P: Rn • Rn, F E Cr, 

F(x
0

) = o, and A= P' (X0 ). · Divide the eigenvalues of A into three 

sets, 

as = P. I Re (>. ) < O } 

au = P. I Re (>. ) > o } 

a c = {). I Re (>. ) = O } 

Denote the eigenspaces associated with these sets by E
5

, Eu, and E
0 

respectively. Then there exist er stable and unstable manifolds W
5 

and Wu which are tangent to Es and Eu at x0 , and a cr-i center 

manifold W0 tangent to E0 at x 0 • W" , and W0 are all invariant 

for F. W5 and Wu are unique, but W0 may not be. 

Example: Consider the following system in R2
: x' = x

2
, y' = -y. 

The phase plane equation is dy/dx = -y/x 2
, or y' = (-l/x

2
)y. The 

solution to this is y = ce 11x. For x < 0, trajectories approach the 

origin 'flatly', with zero derivatives at the origin. The unique 

stable manifold is they axis. However, the center manifold, which 

must be tangent to the x axis at the origin, is obviously not 

unique. See Figure 9.4. 

3 The symbol a is often used to denote the set of all 
eigenvalues A1 of a matrix. This set is called the spectrum. 
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Y Ws 

Figure 9.~ - Example 

The center manifold theorem is important because it permits many 

problems of interest related to bifurcation points to be reduced 

from n-dimensional problems to nc-dimensional problems, where nc is 

the dimension of the center manifold. 

Further Reading 

Additional materials on bifurcations in iterated maps can be found 

in (Devaney], including some examples of less typical bifurcations 

in maps on R1 and a chapter on the Hopf bifurcation. 

(Guckenheimer/Holmes] 

dynamical systems. 

treats bifurcations in n-dimensional 
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Problems 

1) Follow these steps to prove Theorem 9.2. 

a) Show the existence of p such that fpcxl (x) = x by an argument 

similar to that used in the proof of Theorem 9.1. (Let 

G(x,>.) = fA(x) - x.) 

b) Take the derivative of G(x,>.) with respect to x by using 

the chain rule. Solve for p' (x) and show that p' (x 0 )=0. 

c) Use the quotient rule to find p"(x 0 ) ""O. 

2) This problem illustrates how a lack of smoothness arises when 

curves are pieced together, as is sometimes done when forming a 

center manifold. 

a) Find the 

Let x' = ax, y' = by, b >a> o. 

critical point(s) and show that 

hyperbolic. 

it (they) are 

b) Find the phase plane equation and show that y = CI x I b/a is a 

solution. 

c) Form a curve by taking the union of the origin and two 

curves to the left and right. How many times differentiable 

will this curve be? 

3) Consider the system x' = µx - x3
, y' = y, µ' = o. 

a) Find the equilibrium points. Show that ( O, O, 0) is non­

hyperbolic, but that all others are hyperbolic in the 

appropriateµ= constant plane. (Note that allµ= constant 

planes are invariant.) 
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b) Analyze the stability of each. 

c) Find the center, stable, and unstable manifolds of (O,O,O). 

d) Hint: A sketch in the x-y-µ phase space may be helpful, but 

a bit tricky to sketch. 
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Chapter 10 - The Smale Horseshoe 

The famous horseshoe map of Smale is a structurally stable map with 

infinitely many periodic points. Thus it serves as a counter-

example for the converse of Theorem 8.3. It also builds on the 

method of using sequence spaces, introduced in chapters 3 and 4. 

The horseshoe map takes points in a square into the plane, or 

H: s -... R2 where s = [ 0, a] X [ 0 , a] . The invariant set of H will 

consist of points ins which remain in S for all iterates of H. 

H takes Sand stretches its height by a factor ofµ and scales its 

width by A, whereµ> 2 and A< 1/2. This rectangle is bent into 

a horseshoe shape so that the two 'legs' are contained is S. 

Figure 10.1 shows one iterate of H. 
D C 

•-, 
A B 

A B 

f ol d 
here 

A B C D 

Figure 10.1 - Horseshoe Map 

Let I/ indicate the set of points in H(S)nS. Thus I/ consists of 

two vertical bars. If the map is "followed backwards", it is seen 
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that H- 1 
( r;) is made up of two horizontal bars. Call this set I 1-. 

These regions are shaded in Figure 10.1. 

Let I; be the set of points in H2 (S)ns. Ifs with I; shaded is 

subject to a second iteration of H, I 2+ is seen to consist of four 

vertical bars. Call H- 1 
( I/) I 2 so that I 2 - consists of four 

horizontal bars. See Figure 10.2. 

.,_ > T, ,.,. ' 

:r 
> 

t t - -
' _i -2 -1 

T. 'µ 
µ ., _j 

f-A j .JL 
>-2 

Figure 10.2 - Horseshoe Map, 2nd Iterate 

The set I+ consists of vertical 

strips which intersect any horizontal line in a Cantor set, and I 

consists of horizontal strips which intersect any vertical line 

in a Cantor set. The invariant set I= I-nI+ is a two-dimensional 

Cantor set, A8 • Thus H:A8 • A8 , and points not in A8 are mapped out 

of Sat some iterate. 

This is reminiscent of the maps Fe and Fµ studied earlier, for 

certain values of c and/or µ. Indeed, this map can also be 
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analyzed through the use of symbolic dynamics, i.e. by using a 

topologically conjugate sequence space. Let L 1
2 be the space of 

all bi-infinite binary sequences, · · · a_2a_i- a 0a 1a 2 • • • The 

topological conjugacy, h (x) , between A8 and L ' 2 is defined as 

follows: h (x) = ( · · · a_2a_1 • a 0a 1 • • · ) where a 1 = 0 H1 (x) is in the 

lower half of sand 1 if H1 (x) is in the upper half of s. Thus the 

sequence {a 1 }, i ~ O, gives the forward itinerary af x and {a 1 }, i 

~o, gives the backwards itinerary of x. 

Just as the analysis of H is similar to that of Fe and Fµ, the 

conclusions drawn are also similar. Smale showed that H has the 

following properties: 

1) There is a (countably) infinite set of points in A8 with 

periodic orbits. 

2) There is an (uncountably) infinite set of points in A8 which 

are not periodic. 

3) There is at least one point in A8 which has a dense orbit. 

4) His structurally stable. 

Further Reading 

A good description, of a somewhat qualitative nature, of the 

horseshoe map can be found in [Thompson/Stewart]. A more 

mathematical treatment can be found in both (Devaney] and 

(Guckenheimer/Holmes]. 
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Problems 

1) Find F' (x) and the Jacobian determinant J 8 (x) of H (x) for 

points located in 11-. How will these differ if the horseshoe is 

constructed with its closed side down rather than up? 

2) Show that d(s,t) = :Ejs 1 - t 1 l/2l 1 I is a metric on :E' 2 , where the 

sum is from -oo to +oo. 

3) Let the shift map a: :E ' 2 • :E ' 2 be defined by a ( · · · s_1 • s 0 s 1 · · · ) = 

( · · · S_1So • S1. ' ' ) • 

a) Is a one-to-one? How does this relate to the Jacobian 

determinant found in #1? 

b) Give an example of a points in :E' 2 which has a period three 

orbit under a. 
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Chapter 11 - The Lorenz Equations 

In the early 1960 's Edward Lorenz was studying meteorology at 

M.I.T. After graduating from Dartmouth in 1938, Lorenz planned to 

go into mathematics. Later, at M.I.T., he studied briefly under 

George Birkhoff. If Poincare was the grandfather of dynamical 

systems, Birkoff was the father. 

decided to take up meteorology. 

However, after the war Lorenz 

When he began to notice some 

unusual and interesting behavior in his computer model~ he found 

himself spending much of his time on mathematics once again. 

The set of equations which has come to bear Lorenz' name arises in 

studies of convection. They are a bare-bone simplification of work 

dating back to Lord Rayleigh. They are so bare-bones, in fact, 

that many scientists would look at them and think they couldn't be 

all that bad, that there must be a way to handle the apparently 

simple nonlinear terms. They were wrong. 

Consider a viscous, thermally conducting fluid in a two-dimensional 

region, a cross-section. Assume the bottom is heated uniformly and 

that the temperature difference between the top and bottom is 

constant, ~T. See Figure 11.1. 

------------------------------ Tz 

fluid: 
viscous, 
thermally 
conducting 

------------------------------ T1 
t Qt t t t tQ t 

Figure 11.1 - Convection Cell 
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The flow of the fluid and the conduction of heat through it can be 

modelled by partial differential equations, the unknowns being the 

velocity vector v and the temperature T. The velocity can be 

represented by a stream function~, v = (-a~/ay,a~/ax). Assuming 

that~ and T can be represented by Fourier series, these series in 

two variables with time dependent coefficients can be substituted 

into the partial differential equations. The result is a system 

of ordinary differential equations, one for each time-dependent 

coefficient. See [Saltzman). 

Lorenz decided to look at the dynamics of the first three modes of 

the Fourier series, or the first three ordinary differential 

equations out of the infinite set obtained by the procedure 

described above. These three equations define L:R 3 
• R3 and are 

x' = -a(x - y) 

y' = Rx - y - xz 

Z I = xy - bz . 

The Prantl number, a, is a dimensionless number related to the 

viscous and thermal properties of the fluid. The constant bis 

geometric in nature, being related to the aspect ratio (a) of the 

rectangle by b = 4/(1 + a 2
). The Rayleigh number, R, is another 

dimensionless number and is the ratio of driving forces (~T) to 

damping (due to viscous forces and thermal conductivity). All 

three of these constants are positive. 
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The first mode, x(t), is the first term in the expansion of~- It 

corresponds to convective circulation in a single large eddy 

filling the rectangle. Thus the Lorenz system assumes the 

rectangle is a cross-section of exactly one convective roll. If 

x(t) is positive, the circulation is clockwise and if x(t) is 

negative, it is counter-clockwise. The speed is proportional to 

lx<t>I-

The second mode, y(t), describes the horizontal temperature 

distribution. If x(t) and y(t) have the same sign, the warmer 

fluid is on the side which is rising. Note that changing the sign 

of both x(t) and y(t) results in a mirror image flow, with x' and 

y' changing signs but z' remaining the same. 

The final mode, z(t), describes the vertical temperature profile. 

Although 6T is constant, the gradient is not necessarily constant 

across the cell. 

When R is small, meaning the driving force is small compared to the 

damping, the rest state (O,O,O) should be stable. As R increases, 

the origin should lose its stability as the influx of heat begins 

to put the fluid into motion. Lord Rayleigh analyzed the onset of 

convection and predicted it would occur at R = 1. Thus the first 

test of the Lorenz system is whether or not it models this first 

convective instability. 

The derivative of the system is 
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[ -o CJ 

-oo l L' = R-; -1 
X -b 

At the origin, 

[~ a _{] L' = -1 
0 

One eigenvalue/eigenvector pair is immediate; .X3 = -b, u 3 = (0, O, 1). 

Thus any small z-mode perturbation from the rest state is damped 

out. 

The other two eigenvalues must satisfy the characteristic equation 

.x2 
- (a+ l}.X + (1 - R}a = O. 

For R ~ o, the eigenvalues are approximately -CJ and -1. In this 

case all eigenvalues are negative, and the origin is an attracting 

fixed point. At R = 1 the eigenvalues at the origin are -b, 

-(a+l}, and zero. Thus R = 1 is a bifurcation point with a one­

dimensional center manifold and a two-dimensional stable manifold. 

For R > 1, the origin is a saddle with index 1. There are now two 

more real-valued fixed points, (±[b(R-1} ] 112 ,±[b(R-1} ] 112 ,R-l}. This 

type of bifurcation is called a pitchfork bifurcation. 

The two new fixed points have real, negative eigenvalues so they 

are attracting. The eigenvector for the eigenvalue which changed 

sign at R = 1 spans the direction in which the two new points 

appear, and is tangent to the center manifold of the origin at R 

= 1. Thus the interesting dynamical changes, a reversal of 
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direction for one eigenvector and the appearance of two new 

critical points, all occurred in the center manifold. A two-

dimensional projection of the pitchfork bifurcation is shown in 

Figure 11. 2. 

R < 1 

-• •+--

t 

R = 1 

.i. 
-- . --we 

t 
ws 

R > 1 

-• •+-- • - • •+--

t t t 

Figure 11.2 - Pitchfork Bifurcation 

After the bifurcation at R = 1, the index of the critical point at 

the origin is 1. Since the co-dimension of the stable manifold for 

a hyperbolic fixed point equals the index, there is a two­

dimensional stable manifold for (O,O,O). This surface divides the 

phase space into two regions and is called a separator. The two 

parts of phase space are the basins of attraction for the two 

attracting fixed points. Trajectories in one basin lead to one of 

the fixed points while those in the other basin lead to the other 

fixed point. 

At R =Rh= a(a + b + 3)/(a - b - 1) the system undergoes a Hopf 

bifurcation involving the two fixed points which appeared at 

R = 1. For R > Rh these points are saddles with index 2, thus the 

unstable manifolds are two-dimensional. 
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Lorenz studied the system for the values a= 10, b = 8/3, and 

R = 28. For these values of a and b, Rh~ 24.74. This value of 

a is too high for dry air and corresponds better to cold water. 

The value of b was chosen to minimize the value of ~T for the onset 

of convection. It has been found that for large values of R seven 

and fourteen mode truncations display very different behavior, so 

a three-mode truncation is of questionable physical relevance. 

Despite this, the Lorenz system has been widely studied by both 

mathematicians and physicists. 

To summarize the critical points for the parameter values chosen 

by Lorenz, recall that there are three, (O,O,O) and the mirror­

image points (±[b(R-1) ] 112 ,±[b(R-1) ] 112 ,R-1). These last two are now 

some distance from the origin. All three are saddles of index 2. 

The linearized system for each one has one negative, real 

eigenvalue and a complex conjugate pair with positive real part. 

Trajectories of points nearby are drawn towards these fixed points 

along their one-dimensional stable manifolds and then move away, 

spiralling, along the unstable manifold surface. See Figure 11.3. 

While there is no final steady-state flow, it is possible to find 

a region of phase space enclosing all three fixed points such that 

no trajectory leaves the region. This indicates that all final 

motions are bounded. Actually, a nested sequence of such regions 

can be found. 
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Figure 11.3 - Lorenz System 

To see why this 'shrinking' may be expected, the transport theorem, 

d/dt vol F d3x = vol (dF/dt + F ·V) d 3x , 

may be applied to phase space. Let F = 1 and let v = L. Then 

d(vol)/dt = vol div (L) d 3x. 

The divergence of the Lorenz system, div L, is ax'/ax + ay'/ay + 

a z'/az =-(a+ b + 1) < o. Thus the phase space shrinks with time 

to some set with zero volume, such as a surface. 

In closing, some additional conclusions should be noted although 

they will not be justified mathematically here. While the global 

behavior can only be investigated numerically, it has been found 

that a trajectory will spiral out from one of the two saddles other 

than the origin. After some number of turns, which is 

unpredictable, it is 'captured' by the other saddle. At this point 

it approaches that saddle then spirals outwards from it. The 
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w-limit set turns out to be a 'surface' comprised of layers such 

that a cross-section of it is a cantor-like-set. Thus it has zero 

volume. Finally, the Lorenz system is never structurally stable, 

for any value of R! 

The Lorenz system has been widely studied and much has been written 

about it. Many studies have examined the behavior as a function 

of R, holding a and b constant, as has been done here. However, 

it has been examined as a function of a also. It has also been 

established that as R • oo, the system has steady, periodic 

solutions. 

Further Reading 

Both [Thompson/Stewart] and [Guckenheimer/Holmes] devote a 

considerable amount of space to the Lorenz system. The second is 

very technical, the first is not. Many references to other works 

are contained in both. Anyone interested in chaotic dynamics 

should also read the two classic papers by (Lorenz]. 
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Appendix A - Review Problems 

These problems are intended to serve as a review and to give some 

practice at basic skills. They can be considered to be a sort of 

prerequisite in that the reader is expected to be able to do them 

without much trouble, although some review may be required. 

1) The purpose of this exercise is to give you a feel for an 

apparently simple map which we will be studied in detail. 

Using a hand calculator or a simple computer program, iterate this 

for three different values of c; c > 1/4, c = 1/4, and c < 1/4. 

Choose several arbitrary initial values for each case. For each 

value of c, sketch a graph of y = f(xn). Include the line y=x on 

each of the graphs. 

2) One of the most basic biological models used for single species 

populations is the 'logistic equation': 

dP/dt = kP ( 1-P) 

where P is the population (normalized in relation to carrying 

capacity). [See, for example, "Wildlife Ecology and Management" 

by Robinson/Bolen.] 

i) Describe what happens when P = 1, P < 1, and P > 1. 

ii) Under what conditions will the population grow 

exponentially? (Hint: What equation would have an 

exponential solution P=P
0
ekt ?) When might this occur? 
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iii) Solve the differential equation by separation of variables 

and integration by partial fractions. 

3) The goal of this exercise is to find a solution to the 

dynamical system represented by: 

X1 1 = 5X1 + 3X2 X1 ( 0) = a 

X2' = -6X1 - 4X2 X2(0) = b 

where x 11 x2 are functions of time t and indicates a time 

derivative. 

i) Put the system in matrix form, x' = Ax. 

ii) Find the eigenvalues and the associated eigenvectors of the 

2x2 matrix A. 

iii)Let Q be a matrix with the eigenvectors of A as columns. 

Find Q-1 and verify that B=Q-1AQ is diagonal. 

iv) Let x = Qy and rewrite the system in the form y'= By. Find 

y 11 y 2 in terms of x 1 ,x 2 and the initial conditions for yin 

terms of those given for x. 

v) Solve the (uncoupled) system for y 1 and y 2 • 

vi) Find xi(t) and x 2 (t) from y 11 y 2 • 

vii) Verify that these solutions satisfy the original system of 

equations and initial conditions. 
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Appendix B - Problem Solutions 

Review Problems (Appendix A) 

2) i) If p = 1, dP/dt = 0 and the population is in equilibrium. 

3) 

If p < 1, dP/dt > 0 and the population will grow. 

If p > 1, dP/dt < 0 and the population will shrink. 

ii) dP/dt = kP would result in exponential growth. This would 

hold approximately for P << 1. An example would be the 

introduction of a new species to favorable habitat with 

negligible predation and/or disease. 

iii) dP/P(l-P) = k dt(separate variables) 

i) 

ii) 

dP/P - (-dP)/(1-P) = k dt(partial fractions) 

ln P - ln (1-P) =kt+ C(integrate) 

ln (P/1-P) =kt+ C(simplify logs) 

p = cekt; ( 1 + cekt) (solve for P) 

P(O) = P0 = c/l+c(initial population) 

c = P 0/l-P 0 (find c from i.e.) 

[~~ :1 = 
[_ -56 -34] [iz] 

5-Q 3 

I - 0 
-6 -4-Q Q = 2, -1 

Q = 2: 1.-~ -~l l ~] [oo] 
Q = -1: [-~ _;J [~] - l0o] Wz 

iii) Q 
-1 Q = 



iv) 

v) 

vi) 

X = Qy ; y = Q-lX 

Q-lX I = Q-1AX = (Q-1AQ) Q-1x 

Y' = By 

Y1 = 2X 1 + Xz 
Y2 = X1 + Xz 

yi(O) = {2a + b) 
Yz{O) = (a + b) 

Y1 
I = 2Y1 Y1 = A e2t = (2a + 

Y2 
I = -yz Y2 = B e-t = (a + 

X1 = Y1 - Y2 
Xz = -yl + 2Y2 

x 1 = ( 2 a + b) e 2
t - ( a + b) e -t 

x 2 = - ( 2 a + b) e 2t + 2 ( a + b) e -t 

b) e2t 
b) e-t 

vii) x 1 ' = 2{2a + b)e 2t - (a+ b)e-t = 5x 1 + 3x 2 
x 2 ' = -2(2a + b)e 2t - 2{a + b)e-t = -6x 1 -4x 2 

x 1 (0) = 2a + b - a - b = a 
x 2 (0) = -2a -b + 2a +2b = b 
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Chapter 1 Problems 

1) Free Body Diagram • 

~ Fx = mg sin (} = me(} I I 

iB'' - g sin 8 = O 

B'' - (g/i) sin 8 = O 

Linearize: 

sin 0 = 8 + h.o.t. (Taylor Series) 

sin 0 ~ 8 for small 8 

8' ' - (g/ i) 8 = 0 
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2) ( i) I-f a 1 = a 2 = O then each popul a ton is described by the 
logistic equation. (They are uncoupled.) 

(ii)Three can be found from inspection of the equations: 
( 0 I O) ( 0 ' K2) ( K1' 0) . 

The fourth equilibrium point is found by solving: 

0 = K1 - X - 01Y 
0 = Kz - y - OzX 

The solutions are: 
x 0 = (K 1 - a 1K2 ) / ( 1 - a 1a 2 ) 

Yo= (K2 - a 2Ki)/(1 - a 1a 2) 

( iii) (xo + ox) 1 = f31 (Xo + ox) [K1 - (xo + ox) - 01 (Yo + oy)] 

ox 1 = f31Xo [K1 - (xo + ox) - 01 (Yo + oy)] 
+ {31ox(K 1 - (x 0 + ox) - ai(y 0 + oy)] 

ox' = {31x 0
(K1 - X

0 - a 1y 0 ) + f31X0 (-ox - a 1oy) + /J1Y0 0X 
- /31K1ox - /31a 1y 0 ox 

The first term is zero (equilibrium condition) so: 

Similarly: 
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The linearized system is: 

[~;] I• 

3) The trajectory appears to cross itself because the view is 
actually a projection of the full phase space. We could 
add a time axis into the page. The trajectory would not 
cross itself in the three dimensional space (x,x',t). 
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Chapter 2 Problems 

1) d 1: The interior of the unit circle 
d 2: A square with sides of length 2 centered at origin 
d 3 : A diamond centered at origin with (0,1) and (1,0) as two of 

its vertices. 

2) Let€= 1/2. Let p E Q. For any owe can find x ~ Q such that 
Ip-xi < o, but lf(p) - f(x) I > €. Likewise, for p ~ Q, but in 
this case x E Q. (That such an x can be found follows from the 
rationals and irrationals being dense in [0,l]). 

3) (i) sinh- 1 x = ln[x + (x 2 + 1) 112] 
( sinh-1 x) ' = ( 1 + x2) 112 

(from tables) 
(also from tables) 

4) 

5) 

sinh x is 1-1, onto, and continuous and its inverse is 
continuous, so it is a homeomorphism. 

Since sinh x and its inverse are both C1, sinh is a 
C1-diffeomorphism. 

(ii)cosh xis not 1-1, so it is not a homeomorphism. 

(iii) xn is 1-1, onto and continuous if n is odd. 
The inverse, x 11n, is not C1 (at 0) so xn is not a 
diffeomorphism. 

(iv)J 0 (x) is oscillatory, so it is not 1-1. 

(i) 0 

(ii)l/n I n E z+ 

(iii) 2-n , 5-n n E z+ 

Area after the nth step: 

n=l: ( 2/5) 2 (4) = ( 4/5) 2 

n=2: (4/25) 2 (16) = ( 4/5) 4 

n=3: (4/5) 6 

n=i: ( 4/ 5) 2i 

1 iIDn- (Area) = 0 

Since the area remaining is zero, there are no two-dimensional 
intervals remaining. Since any horizontal or vertical •cut' is 
a middle-fifths cantor set, there are no one-dimensional 
intervals remaining either. 

That the set is closed and that all points are limit points can 
be shown in a manner analogous to that used for A 3 • To construct 
the sequences in this case, corners can be used. 



6) i) d(s,s) = ~(0/2 1) = 0 
d(s,t) > 0 ifs~ t since s 1 ~ t 1 for some i and 

nonzero term in the sum is positive 
d(s,t) = d(t,s) since ls 1 - t 1I = lt 1 - s1l 
d(s,r) + d(s,t) ~ d(r,t) since lr 1-s 1l + f s 1-t1l 
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since every 

ii) d(Si,S2) 
d(si,s 3 ) 

d(si,s 4 ) 

= [~(1/2) 1
] - 1 = (1-(1/2) J-112 

- 1 = 2 - 1 = 1 
= [~(1/2) 1

] - 1 - 1/2 - 1/4 = 1 - 3/4 = 1/4 
[~(1/2) 1

] - 1 - 1/2 - 1/4 - 1/8= 1/4 - 1/8= 1/8 

'Close' means agreeing in the first terms 

iii) M = ~(1/2) 1 = 2 

s = ( 000 . . . ) t = ( 111 . . . ) 
s = (0101 ... ) t = (1010 ..• ) 

iv) Let t = (t 1t 2t 3 ••• ) • Let Tn = (ti- .. tn ti- .. tn ... ) . Thus 
Tn agrees with tin the first n places, then repeats. 
As n • oo T n• t. 



Chapter 3 Problems 

1) F_i(x) = x 2 
- l 

F' (x) - 2,x 

Fixed Points: x = x 2 
- 1 

x 2 
- X - 1 = 0 X = (1 ± )5)/2 

F' at fixed points: (1 ± )5) • both repelling 

Prime Period 2 pts: -1,0 

(F 2
) 1 = F' (F(x)) F' (x) (Chain Rule) 

= 2F (xl · 2x 
= 4x(x - 1) 

I (F 2
) '(0) I = I (F 2

) '(-1) I = o < 1 • attracting 

2) Fixed points: x = x 2 + c 
X

2 
- X + C = 0 
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x = (1 ± Jl - 4c)/2 (two distinct real solutions if 
C < 1/ 4.) 

Derivative at fixed points: 1 ± (Jl - 4c) 

The larger(+) is greater than one for c < 1/4. 
The smaller one is less than 1 in magnitude for c > -3/4. 
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Chapter 4 Problems 

1) Property 1: Pern(a) has 2n elements; they are the sequences 
which repeat every n entries, or the 2n binary 

numbers with n digits. 

Property 2: Follows immediately from #6(iv) in Chapter 3. 

Property 3: s = (0 1 00 01 10 11 000 001 010 011 100 101 ... ). 
Choose any point t. For any i an(s) will equal t 

in the first i places for some n. 

2) No. It is not 1-1 (it's 2-1) and it has eventually fixed points 
such as (011011111 ... ). See Theorem 3.1. 

3) Let f = x 2 + c and g = µx(l - x) in the definition of a 
topological conjugacy. Then 

4) 

h O f = a (x 2 + c) + {3 and 

g 0 h =µ(ax+ {3) (1 - ax - {3). 

Equating these, expanding, and then equating the coefficients 
of x2

, x 1
, x 0 on each side gives 

a= -(µa 2
) orµ= -1/a , 

µa(l - 2/3) = 0 so {3 = 1/2 , and 

ac + {3 = µ{3(1 - {3) . 

Solving the last equation forµ in terms of c, 

µ = 1 ± ) 1- 4c. 

Since h(x) is the equation of a line it is c0
, 1-1, and onto and 

is therefore a homeomorphism. 

--r 
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In each of I 1 , I 2 , I 3 , and I 4 three subintervals are mapped into 
components of A0 , and therefore escape. This process continues, 
so that the set of points with bounded orbits is a Cantor set. 

The appropriate conjugate space would be L4 • 

The conjugacy would be f(x)={s 0s 1 ·· }where sn =i if fn(x) E I i . 

The properties would be: 
1) Pern(a) has 4n elements 
2) Per(a) is dense in L4 
3) a has a dense orbit in L4 • 

A dense orbit would be: 
s = (0 1 2 3 00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33 

000 001 · · · ) . 

Note that this is what we expect to work. 
constitutes a rigorous proof of anything. -

Nothing done here 
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Chapter 5 Problems 

1) T .x< 8 ) = 8 + 2 7r ( p / q) ; T .x q ( 8 ) = 8 + 2 7rp = 8 • 

T.x is not chaotic in either case. It does not have sensitive 
dependence on initial conditions. Also, if .x E Q it is not 
topologically transitive and if .x ~ Q there are no periodic points. 

2) y = cos (n arccos x) 
y' = n sin(n arccos x)/(1 - x 2f 12 

y" = nx sin(n arccos x)/(1-x 2
) 

12 - n 2 cos(n arccos x)/(1 - x 2
) 

Substituting these into the differential equation shows that it is 
satisfied. 

3) Let BP E Peri (gn). 

Tni(cos BP) = cos (ni arccos (cos BP)) = cos niBP. 

Since BP E Peri(gn)' niBP = Bp, so T/(cos Bp) = cos BP • 

4) If b = 0, Xn+i = 1 - ax/ . Let t = -ax, or x = -t/ a. 

Th t / = -t 2
/ t t 2 en - n+l a 1 - n a I Or n+l = n - a. 

5) a) T 3 ( X) = 4 x 3 
- 3 X ' T 2 ( X) = 2 x 2 

- 1 

T4 (x) = 2x ( 4x 3 
- Jx) - 2x 2 +l = 8x 4 

- 8x 2 + 1 

b) h 0 g = cos 48 

T 0 h = 8cos 4 8 - 8cos 2 8 + l 

cos 48 = 8cos 4 8 - 8cos 2 8 + l (multiple angle formula) 

6) H2 (x) = 2x(2x) - 2(1) (1) = 4x 2 
- 2 

H2 is conjugate to F_8 (x) = x 2 
- 8 through the homeomorphism 

f(x) = 4x. Thus the dynamics are equivalent. 
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Chapter 6 Problems 

1) a) f(x) oscillates between the curves x/2 ± x2
• The closer it 

gets to zero, the more it oscillates per unit length. In any 
neighborhood of the origin, it has infinitely many local extrema. 
Thus it is not one-to-one on any interval (-€,€). 

b) f ' ( 0) = 1 imh• o ( 1/h) [ f ( h) - f ( 0) J = 
limh • o [ (h/2) + h 2sin ( 1/h) J /h = limh • o [ 1/2 + h sin ( 1/h) J = 1/2. This 
does not contradict the implicit function theorem because f(x) and 
f' (x) are not continuous at x = 0. 

2) F(e- 2 ,2) = e- 2e 2 
- 2 + 1 = o. aF/ax = eY, aF/ax(e- 2 ,2) = e 2 

"" o. 
Therefore, x = f (y) in a neighborhood of ( e- 2

, 2) . However, 
aF/ay = xeY - 1, aF/ay(e- 2 ,2) = o, so the implicit function theorem 
does not apply in this case. 

From implicitly differentiating F(x,y) with respect toy, it is 
found that x' = e-y - x, and x" = -e-y - 1. Since x' (e- 2 ,2) = o 
and x"(e- 2 ,2) < o, x = f(y) has a minimum at (e- 2 ,2). Therefore 
x = f(y) is not one-to-one and cannot be inverted. Thus y cannot 
be written as a function of x at this point. 

3) F(µ,x) = µx(l - x). 

a) F' = [x(l - x), µ(1 - 2x) J = [aF/aµ,aF/axJ. 

b) µ = f(x) for x ~ 0,1 and F(µ,x) = o. 
x = g(µ) forµ~ o, x"" 1/2 and F(µ,x) = 0. 
Note that for x = 1/2 and F = o µ = o, so this is 
actually one case. 

c) From implicit differentiation: 

µ' = µ(2x - 1)/x(l - x), soµ' (0,x) = µ' (0,1/2) = o. 

From inspection of the equation forµ', it can be 
determined thatµ' changes sign asµ passes through 0. 

Thusµ= f(x) is not one-to-one at those points, so 
x = g(µ) cannot be defined there. 

x' = x(x -1)/µ(1 - 2x), so x'(µ,0) = x' (µ,1) = o. 

From a similar argument, it is established thatµ= f(x) 
cannot be defined for these conditions. 

4) T must be invertible, or det T"" 0. 

5) They are solutions to the characteristic polynomial, which is 
a polynomial with real coefficients. It could be written as 
p(x) = TTi(X - Ai). If some A1 is complex, its conjugate must appear 
as some Aj in order for p(x) to have real coefficients. 



6) Pa = det (>.I - B) 
= det (>.T-1T - T-1AT) 
= det (T-1(>.I - A)T) 
= (det T-1) [det (>.I - A)] (det T) 
= det (>.I - A) = PA 
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7 ) a ) r 2 = x2 + y 2 

2rr' = 2xx' + 2yy' or rr' =xx'+ yy' 
write x' and y' in terms of rand 0, multiply by (r cos 0) 
and (r sin 0) respectively, add, and divide by r to obtain: 

r' = r 3 sin (1r/r) 

y = r sin 0 
y'= r'sin 0 + r(cos 0)0', or 0 1 = (y' - r' sin 0)/r cos 0 
use y' in terms of rand 0 as above, and use the expression 

above for r', to get: 

0' = l 

b) If 2n < 1/r < 2n + 1, r' > o (i.e. if 1/2n > r > l/2n+l) 
If 2n > 1/r > 2n - 1, r' < O (i.e. if 1/2n < r < 1/2n-1) 

c) 

f 
---l 

8) (O,O): >.1 = fi1K1 , >.2 = fi2K2 : repelling node 

(O,K 2): >.1 = -fi 2K2 (attracts) 
>.2 = fi1 (K1 - >.1K2) (depends on K1 - >.1K2) 

(K1, O): >.1 = -fi 1K1 (attracts) 
>.2 = fi2 (K2 - >.2K1) (depends on K2 - >.2K1) 

(Xo,Yo): >-1,2 = 1/2{ [-(fi1Xo+fi2Yo) ]±[ (fi1Xo+fi2Yo)2-4 (l->.1>-2)fi1fi2XoY0] 112} 

When (x 0 ,y 0 ) is in the first quadrant, there are two cases: 

i) >.1>.2 > 1: (x 0,y 0} is a saddle, other two are attractors 

ii) >.1>.2 < 1: (x 0,y 0) is an attractor, others are saddles 

Notes: Remember that fi1 and K1 are intrinsically positive, 
they represent carrying capacities and growth rates. 
recall that populations are positive, so only the 
quadrant is of interest. 

since 
Also 

first 
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Chapter 7 Problems 

1) If two stable manifolds of distinct critical points intersect, 
then the solution to the system is not unique for each x. If two 
unstable manifolds intersect, the system is not deterministic. 

2) Each trajectory, or any union of trajectories, is an invariant 
set. The nonwandering set n contains only the origin. Since the 
origin is a fixed point, it is a trajectory. Thus n contains one 
and only one invariant set. 

3) There is one. Forµ= 4 it is the interval (O,l] and for 
µ > 4 it is Aµ C (0,1]. 

4) For {xlr > l}, the a-limit set is {xlr = l}, and thew-limit 
set is empty. For each circle, Sn= {xlr = 1/n}, the a-limit set 
and thew-limit set is itself, Sn. For any set of points in an 
annular region between two circles Sn and Sn+i, the circle with odd 
index is the a-limit set and the one with even index is thew-limit 
set. 



Chapter 8 Problems 

1) a) v = -xy 
x' = -av/ax 
y' = -av/ay 

fixed points: (O,O) 

All fixed points are hyperbolic, so this system is 
structurally stable. 

b) (0,±1) are fixed points, and are saddles, since 

F' (0,±1) = 

When x = O, x' = o and y' = -1 + y 2
• 
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For IYI < 1, y' < 1, so there is a trajectory connecting 
the two saddles. Therefore, this system is structurally 
unstable. 

c) V = - ( 1/ 2 ) exp ( x2 + y2
) 

x' = -av/ax 
y' = -av/ay 

The only fixed point is (O,O) and F' (O,O) = I, so the fixed 
point is hyperbolic. Thus this system is structurally 
stable. 

d) Chapter 6, prob. 7 - This system does not have a finite 
number of limit cycles, so the system is structurally 
unstable. 
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Chapter 9 Problems 

1) a) Let G(x,>.) = f>-(x) - x. If G(x,>.) = O, then f>- has a fixed 
point at x. By hypothesis, G(x 0 ,>.0 ) = o. aG/8>. = af>./a>., and at>. 
= >.0 this is nonzero by hypothesis. Since aG/a>.1>-->-o "' O, the 
implicit function theorem gives a smooth function>.= p(x) such 
that G(x,p(x)) = O, or fp<x>(x) = x. 

b) aG/ax + (8G/8>.Jp'(x) = o, so p'(x) = -(8G/ax)/(8G/8>.). 
8G/8x = f>-' (x) - 1. At (x 0 ,>.0 ), f>-o' (x 0 ) = 1 by hypothesis, so 
p I (Xo) = Q • 

c) Write p' (x) = -f(x,y)/g(x,y). Then use the quotient rule to 
get p" (x) = {-g(x,y) [fx(x,y) + fy(X,Y)YxJ + f(x,y) [ ... ] }/(g(x,y) ]

2 

At x 0 , note that Yx = p' (x) = O and f(x y) = 8G/ax = O. Therefore, 
p"(x) = -g(x,y)fx(x,y)/[g(x,y)J 2 = -(a~G/ax 2

) (8G/a>.)/(8G/a>.)
2 

,e o. 

2) a) Critical point: (O,O). (This is a linear system.) 

F'(O,O) - [: :] • hyperbolic. 

b) dy/dx = (b/a)y/x 
y = clxlb/a 
y'= (b/a)Clxl<bfa>-l = (b/a)y/x 

c) If r < b/ a < r+ 1, y E er but y <£. cr+l. 

3) a) Critical points: 2 (O,O,µ), (c,O,c) for c > o. 

[µ-f' 0 t] F' (x) = 1 
0 

[~ 0 ~] (i) F' (O,O,O) = 1 • non-hyperbolic 
0 

[{ 0 ~] (ii) F' (O,O,µ) = 1 • hyp. in µ=const plane 
0 

[-2c 0 

}] ( iii) F' (±Jc,O,c) = 0 1 • hyp.in µ=const plane 
0 0 

b) (i) Eu= y-axis; Ee = x-µ plane 
(ii) repelling node forµ> O; saddle forµ< O 
(iii} saddle 

c) for (O,O,O): ws = ¢ 

Wu = y-axis 
we = x-µ plane 



109 

Chapter 10 Problems 

1) HI = [ ±.x OJ 
0 ±µ. 

The+ signs apply to the part which is not flipped over. 

2) Clearly, d(s,t) ~ O v s,t and d(s,t) = O iff s 1 = ti Vi. Since 
ls1 - t1I = lt1 - s 11, d(s,t) = d(t,s). If r,s,t E :E' 2 , then 

lr1 s 11 + !s 1 - t 1I ~ lr 1 - t 11, so d(r,s) + d(s,t) ~ d(r,t). 

3) a) a is one-to-one. Since a is topologically conjugate to H, 
they are both invertible. The inverse function theorem 
requires J 8 # O for H to be invertible. 

b) · · · 01101101.1011011 • · · e Per 3 (a). 
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